
ModelArts

Model Development

Issue 01

Date 2025-01-06

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Introduction to Model Development.. 1

2 Preparing Data... 3

3 Preparing Algorithms... 6
3.1 Introduction to Algorithm Preparation.. 6
3.2 Using a Preset Image (Custom Script)...7
3.2.1 Overview... 7
3.2.2 Developing a Custom Script... 8
3.2.3 Creating an Algorithm... 10
3.3 Using Custom Images... 15
3.4 Viewing Algorithm Details... 17
3.5 Searching for an Algorithm... 19
3.6 Deleting an Algorithm.. 19

4 Performing a Training.. 20
4.1 Creating a Training Job... 20
4.2 Viewing Training Job Details... 35
4.3 Viewing Training Job Events.. 37
4.4 Training Job Logs...39
4.4.1 Introduction to Training Job Logs.. 39
4.4.2 Common Logs... 40
4.4.3 Viewing Training Job Logs.. 41
4.4.4 Locating Faults by Analyzing Training Logs... 42
4.5 Cloud Shell.. 43
4.5.1 Logging In to a Training Container Using Cloud Shell... 43
4.5.2 Keeping a Training Job Running... 45
4.5.3 Preventing Cloud Shell Session from Disconnection... 47
4.6 Viewing the Resource Usage of a Training Job.. 47
4.7 Evaluation Results...49
4.8 Viewing Training Tags... 53
4.9 Viewing Fault Recovery Details.. 54
4.10 Viewing Environment Variables of a Training Container..54
4.11 Stopping, Rebuilding, or Searching for a Training Job...59
4.12 Releasing Training Job Resources..60

ModelArts
Model Development Contents

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

5 Advanced Training Operations...61
5.1 Automatic Recovery from a Training Fault.. 61
5.1.1 Training Fault Tolerance Check... 61
5.1.2 Unconditional Auto Restart... 66
5.2 Resumable Training and Incremental Training... 67
5.3 Detecting Training Job Suspension... 69
5.4 Priority of a Training Job.. 69
5.5 Permission to Set the Highest Job Priority...70

6 Distributed Training..72
6.1 Distributed Training Functions... 72
6.2 Single-Node Multi-Card Training Using DataParallel...73
6.3 Multi-Node Multi-Card Training Using DistributedDataParallel ...75
6.4 Distributed Debugging Adaptation and Code Example.. 76
6.5 Sample Code of Distributed Training... 80
6.6 Example of Starting PyTorch DDP Training Based on a Training Job... 86

7 Automatic Model Tuning (AutoSearch)...90
7.1 Introduction to Hyperparameter Search... 90
7.2 Search Algorithm.. 90
7.2.1 Bayesian Optimization (SMAC).. 90
7.2.2 TPE Algorithm...91
7.2.3 Simulated Annealing Algorithm... 92
7.3 Creating a Hyperparameter Search Job.. 92

ModelArts
Model Development Contents

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Introduction to Model Development

AI modeling involves two stages:

● Development: Prepare and configure the environment, and debug code for
training based on deep learning. ModelArts DevEnviron is recommended for
code debugging.

● Experiment: Optimize the datasets and hyperparameters, and obtain an ideal
model through multiple rounds of experiments. The ModelArts training
platform is recommended for training.

In the two stages, code is designed, developed and tested in repeated cycles. In
the development stage, when the code becomes stable, the modeling process
enters the experiment stage, during which hyperparameters are continuously
optimized to iterate the model. In the experiment stage, when the training
performance can be optimized, the modeling process returns to the development
stage for optimizing code.

Figure 1-1 Model development process

ModelArts provides model training, which allows you to view training results and
tune model parameters based on the training results. You can select resource
pools with different instance flavors for model training.

The following guides you to train models on ModelArts:

● Upload the labeled data to OBS. For details, see Preparing Data.

ModelArts
Model Development 1 Introduction to Model Development

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

● Follow the instructions provided in Preparing Algorithms to use an algorithm
for model training.

● Create a training job. You can perform this operation on the ModelArts
console. For details, see Creating a Training Job. For details about how to
create models using custom algorithms, see Using a Custom Algorithm to
Build a Handwritten Digit Recognition Model.

● Follow the instructions provided in Training Job Logs to view training job logs
and training resource usage.

● Follow the instructions provided in Stopping, Rebuilding, or Searching for a
Training Job to stop or delete a training job.

● Follow the instructions provided in Automatic Model Tuning (AutoSearch)
to automatically tune model hyperparameters.

● Troubleshoot if you encounter any problem during training. For details, see
Troubleshooting.

ModelArts
Model Development 1 Introduction to Model Development

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0080.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0080.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0009.html

2 Preparing Data

ModelArts uses OBS to store data, and backs up and takes snapshots for models,
achieving secure, reliable storage at low costs.

● OBS
● Obtaining Training Data

OBS
OBS provides stable, secure, and efficient cloud storage service that lets you store
virtually any volume of unstructured data in any format. Bucket and objects are
basic concepts in OBS. A bucket is a container for storing objects in OBS. Each
bucket is specific to a region and has specific storage class and access permissions.
A bucket is accessible through its domain name over the Internet. An object is the
basic unit of data storage in OBS.

OBS is a data storage center for ModelArts. All the input data, output data, and
cache data during AI development can be stored in OBS buckets for reading.

Before using ModelArts, create an OBS bucket and folders for storing data.

ModelArts
Model Development 2 Preparing Data

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0003.html

Figure 2-1 OBS

Obtaining Training Data
Use either of the following methods to obtain ModelArts training data:

● Datasets stored in OBS buckets
After labeling and preprocessing your dataset, upload it to an OBS bucket.
When you create a training job, set Input to the path of the OBS bucket
where the training data is stored.

● Datasets in data management
If your dataset has not labeled or requires preprocessing, import it to
ModelArts data management for data preprocessing.

NO TE

ModelArts data management is being upgraded and is invisible to users who have not used
data management. It is recommended that new users store their training data in OBS
buckets.

ModelArts
Model Development 2 Preparing Data

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Figure 2-2 Preparing data

ModelArts
Model Development 2 Preparing Data

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

3 Preparing Algorithms

3.1 Introduction to Algorithm Preparation
Machine learning explores general rules from limited volume of data and uses
these rules to predict unknown data. To obtain more accurate prediction results,
select a proper algorithm to train your model. ModelArts provides a large number
of algorithm samples for different scenarios. This section describes algorithm
sources and learning modes.

Algorithm Sources
You can use one of the following methods to build a ModelArts model:

● Using a preset image
To use a custom algorithm, use a framework built in ModelArts. ModelArts
supports most mainstream AI engines. For details, see Built-in Training
Engines. These built-in engines pre-load some extra Python packages, such as
NumPy. You can also use the requirements.txt file in the code directory to
install dependency packages. For details about how to create a training job
using a preset image, see Using a Preset Image (Custom Script).

● Using a custom image
The subscribed algorithms and built-in frameworks can be used in most
training scenarios. In certain scenarios, ModelArts allows you to create custom
images to train models. Custom images can be used to train models in
ModelArts only after they are uploaded to Software Repository for Container
(SWR). For details, see Using a Custom Image to Train Models Customizing
an image requires a deep understanding of containers. Use this method only
if the subscribed algorithms and custom scripts cannot meet your
requirements.

Algorithm Learning Modes
ModelArts allows you to train models in different modes as required.

● Offline learning
Offline learning is the most fundamental mode for model training. In this
mode, all data required for training must be provided at a time, and

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/docker-modelarts/docker-modelarts_0017.html

optimizing the objective function stops when the training is complete. The
advantage of this mode is that the trained models are stable, facilitating
model verification and evaluation.

● Incremental learning

Incremental learning is a continuous learning process. Compared with offline
learning, it does not need to store all training data at a time, which alleviates
the problem of limited storage resources. In addition, it saves a large amount
of compute power and time, and reduces economic costs in retraining.

3.2 Using a Preset Image (Custom Script)

3.2.1 Overview
If the subscribed algorithms cannot meet your requirements or you want to
migrate local algorithms to ModelArts for training, use the ModelArts preset
images to create algorithms. This method is also called using a preset image.

This section describes how to use a preset image to create an algorithm.

● For details about ModelArts built-in engines and models, see Built-in
Training Engines.

● To migrate local algorithms to ModelArts, perform code adaptation. For
details, see Developing a Custom Script.

● For details about how to use a preset image to create an algorithm on the
ModelArts console, see Creating an Algorithm.

Built-in Training Engines

The following table lists the training engines and their versions supported by
ModelArts.

NO TE

Supported AI engines vary depending on regions.

Table 3-1 AI engines supported by training jobs

Runtime
Environmen
t

System
Archite
cture

System
Version

AI Engine and Version Supported
CUDA or
Ascend
Version

TensorFlow x86_64 Ubuntu18.04 tensorflow_2.1.0-
cuda_10.1-py_3.7-
ubuntu_18.04-x86_64

cuda10.1

PyTorch x86_64 Ubuntu18.04 pytorch_1.8.0-
cuda_10.2-py_3.7-
ubuntu_18.04-x86_64

cuda10.2

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Runtime
Environmen
t

System
Archite
cture

System
Version

AI Engine and Version Supported
CUDA or
Ascend
Version

MPI x86_64 Ubuntu18.04 mindspore_1.3.0-
cuda_10.1-py_3.7-
ubuntu_1804-x86_64

cuda_10.1

Horovod x86_64 ubuntu_18.04 horovod_0.20.0-
tensorflow_2.1.0-
cuda_10.1-py_3.7-
ubuntu_18.04-x86_64

cuda_10.1

horovod_0.22.1-
pytorch_1.8.0-
cuda_10.2-py_3.7-
ubuntu_18.04-x86_64

cuda_10.2

3.2.2 Developing a Custom Script
Before you use a preset image to create an algorithm, develop the algorithm code.
This section describes how to modify local code for model training on ModelArts.

When creating an algorithm, set the code directory, boot file, input path, and
output path. These settings enable the interaction between your codes and
ModelArts.

● Code directory
Specify the code directory in the OBS bucket and upload training data such as
training code, dependency installation packages, or pre-generated model to
the directory. After you create the training job, ModelArts downloads the code
directory and its subdirectories to the container.
Take OBS path obs://obs-bucket/training-test/demo-code as an example.
The content in the OBS path will be automatically downloaded to $
{MA_JOB_DIR}/demo-code in the training container, and demo-code
(customizable) is the last-level directory of the OBS path.
Do not store training data in the code directory. When the training job starts,
the data stored in the code directory will be downloaded to the backend. A
large amount of training data may lead to a download failure. It is
recommended that the size of the code directory does not exceed 50 MB.

● Boot file
The boot file in the code directory is used to start the training. Only Python
boot files are supported.

● Input path
The training data must be uploaded to an OBS bucket or stored in the
dataset. In the training code, the input path must be parsed. ModelArts
automatically downloads the data in the input path to the local container
directory for training. Ensure that you have the read permission to the OBS
bucket. After the training job is started, ModelArts mounts a disk to the /

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0006.html

cache directory. You can use this directory to store temporary files. For details
about the size of the /cache directory, see What Are Sizes of the /cache
Directories for Different Resource Specifications in the Training
Environment?

● Output path
You are advised to set an empty directory as the training output path. In the
training code, the output path must be parsed. ModelArts automatically
uploads the training output to the output path. Ensure that you have the
write and read permissions to the OBS bucket.

The following section describes how to develop training code in ModelArts.

(Optional) Introducing Dependencies
1. If your model references other dependencies, place the required file or

installation package in Code Directory you set during algorithm creation.
– For details about how to install the Python dependency package, see

How Do I Create a Training Job When a Dependency Package Is
Referenced by the Model to Be Trained?

– For details about how to install a C++ dependency library, see How Do I
Install a Library That C++ Depends on?

– For details about how to load parameters to a pre-trained model, see
How Do I Load Some Well Trained Parameters During Job Training?

Parsing Input and Output Paths
When a ModelArts model reads data stored in OBS or outputs data to a specified
OBS path, perform the following operations to configure the input and output
data:

1. Parse the input and output paths in the training code. The following method
is recommended:
import argparse
Create a parsing task.
parser = argparse.ArgumentParser(description='train mnist')

Add parameters.
parser.add_argument('--data_url', type=str, default="./Data/mnist.npz", help='path where the dataset
is saved')
parser.add_argument('--train_url', type=str, default="./Model", help='path where the model is saved')

Parse the parameters.
args = parser.parse_args()

After the parameters are parsed, use data_url and train_url to replace the
paths to the data source and the data output, respectively.

2. When creating a training job, set the input and output paths.
Select the OBS path or dataset path as the training input, and the OBS path
as the output.

Editing Training Code and Saving the Model
Training code and the code for saving the model are closely related to the AI
engine you use. The following uses the TensorFlow framework as an example.
Before using this case, you need to download the mnist.npz file and upload it to

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0090.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0090.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0090.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0063.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0063.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0088.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0088.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0091.html
https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

the OBS bucket. The training input is the OBS path where the mnist.npz file is
stored.

import os
import argparse
import tensorflow as tf

parser = argparse.ArgumentParser(description='train mnist')
parser.add_argument('--data_url', type=str, default="./Data/mnist.npz", help='path where the dataset is
saved')
parser.add_argument('--train_url', type=str, default="./Model", help='path where the model is saved')
args = parser.parse_args()

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url)
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adam',
 loss=loss_fn,
 metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)

model.save(os.path.join(args.train_url, 'model'))

3.2.3 Creating an Algorithm
Your locally developed algorithms or algorithms developed using other tools can
be uploaded to ModelArts for unified management. Note the following when
creating a custom algorithm:

1. Prerequisites
2. Accessing the Algorithm Creation Page
3. Setting Basic Parameters
4. Setting the Boot Mode
5. Configuring Pipelines
6. Defining Hyperparameters
7. Supported Policies
8. Adding Training Constraints
9. Runtime Environment Preview
10. Follow-up Operations

Prerequisites
● Data is available either by creating a dataset in ModelArts or by uploading

the dataset used for training to the OBS directory.
● Your training script has been uploaded to the OBS directory. For details about

how to develop a training script, see Developing a Custom Script.
● At least one empty folder has been created in OBS for storing the training

output.

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

● The account is not in arrears because resources are consumed when training
jobs are running.

● The OBS directory you use and ModelArts are in the same region.

Accessing the Algorithm Creation Page
1. Log in to the ModelArts management console and click Algorithm

Management in the left navigation pane.
2. On the My Algorithms page, click Create. The Create Algorithm page is

displayed.

Setting Basic Parameters

Enter the basic algorithm information, including Name and Description.

Setting the Boot Mode

Select a preset image to create an algorithm.

Set Image, Code Directory, and Boot File based on the algorithm code. Ensure
that the framework of the AI image you select is the same as the one you use for
editing algorithm code. For example, if TensorFlow is used for editing algorithm
code, select a TensorFlow image when you create an algorithm.

Table 3-2 Parameters

Parameter Description

Boot Mode >
Preset image

Select a preset image and its version used by the algorithm. To
use an old-version image, select Show Old Images.

Code Directory OBS path for storing the algorithm code. The files required for
training, such as the training code, dependency installation
packages, and pre-generated models, are uploaded to the
code directory.
Do not store training data in the code directory. When the
training job starts, the data stored in the code directory will be
downloaded to the backend. A large amount of training data
may lead to a download failure.
After you create the training job, ModelArts downloads the
code directory and its subdirectories to the container.
Take OBS path obs://obs-bucket/training-test/demo-code as
an example. The content in the OBS path will be automatically
downloaded to ${MA_JOB_DIR}/demo-code in the training
container, and demo-code (customizable) is the last-level
directory of the OBS path.
NOTE

● Any programming language is supported.
● The number of files (including files and folders) cannot exceed

1,000.
● The total size of files cannot exceed 5 GB.

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Parameter Description

Boot File The file must be stored in the code directory and end with .py.
ModelArts supports boot files edited only in Python.
The boot file in the code directory is used to start a training
job.

Figure 3-1 Using a custom script to create an algorithm

Configuring Pipelines

A preset image-based algorithm obtains data from an OBS bucket or dataset for
model training. The training output is stored in an OBS bucket. The input and
output parameters in your algorithm code must be parsed to enable data
exchange between ModelArts and OBS. For details about how to develop code for
training on ModelArts, see Developing a Custom Script.

When you use a preset image to create an algorithm, configure the input and
output pipelines.

● Input configurations

Table 3-3 Input configurations

Paramete
r

Description

Parameter
Name

Set the name based on the data input parameter in your
algorithm code. The code path parameter must be the same as
the training input parameter parsed in your algorithm code.
Otherwise, the algorithm code cannot obtain the input data.
For example, If you use argparse in the algorithm code to
parse data_url into the data input, set the data input
parameter to data_url when creating the algorithm.

Descriptio
n

Customizable description of the input parameter,

Obtained
from

Source of the input parameter. You can select
Hyperparameters (default) or Environment variables.

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://support.huaweicloud.com/intl/en-us/develop-modelarts/develop-modelarts-0008.html

Paramete
r

Description

Constraint
s

Whether data is obtained from a storage path or ModelArts
dataset.
If you select the ModelArts dataset as the data source, the
following constraints are added:
● Labeling Type: For details, see Creating a Labeling Job.
● Data Format, which can be Default, CarbonData, or both.

Default indicates the manifest format.
● Data Segmentation: available only for image classification,

object detection, text classification, and sound classification
datasets.
Possible values are Segmented dataset, Dataset not
segmented, and Unlimited. For details, see Publishing a
Data Version.

Add Multiple data input sources are allowed.

● Output configurations

Table 3-4 Output configurations

Parameter Description

Parameter
Name

Set the name based on the data output parameter in your
algorithm code. The code path parameter must be the same
as the training output parameter parsed in your algorithm
code. Otherwise, the algorithm code cannot obtain the output
path.
For example, If you use argparse in the algorithm code to
parse train_url into the data output, set the data output
parameter to train_url when creating the algorithm.

Descriptio
n

Customizable description of the output parameter,

Obtained
from

Source of the output parameter. You can select
Hyperparameters (default) or Environment variables.

Add Multiple data output paths are allowed.

Defining Hyperparameters
When you use a preset image to create an algorithm, ModelArts allows you to
customize hyperparameters so you can view or modify them anytime. After the
hyperparameters are defined, they are displayed in the startup command and
transferred to your boot file as CLI parameters.

1. Import hyperparameters.
You can click Add hyperparameter to manually add hyperparameters.

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/datalabel-modelarts/datalabel-modelarts_0004.html
https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0028.html
https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0028.html

2. Edit hyperparameters.
For details, see Table 3-5.

Table 3-5 Hyperparameters

Parame
ter

Description

Name Hyperparameter name
Enter 1 to 64 characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Type Type of the hyperparameter, which can be String, Integer, Float,
or Boolean

Default Default value of the hyperparameter, which is used for training
jobs by default

Constrai
nts

Click Restrain. Then, set the range of the default value or
enumerated value in the dialog box displayed.

Require
d

Select Yes or No.
● If you select No, you can delete the hyperparameter on the

training job creation page when using this algorithm to create
a training job.

● If you select Yes, you cannot delete the hyperparameter on
the training job creation page when using this algorithm to
create a training job.

Descript
ion

Description of the hyperparameter
Only letters, digits, spaces, hyphens (-), underscores (_), commas
(,), and periods (.) are allowed.

Supported Policies

ModelArts supports auto search. Auto search automatically finds the optimal
hyperparameters without any code modification. This improves model precision
and convergence speed. For details about parameter settings, see Parameters of
hyperparameter search.

Only the pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 and
tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64 images are available for
auto search.

Adding Training Constraints

You can add training constraints of the algorithm based on your needs.

● Resource Type: Select the required resource types.
● Multicard Training: Choose whether to support multi-card training.
● Distributed Training: Choose whether to support distributed training.

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://support.huaweicloud.com/intl/en-us/develop-modelarts/develop-modelarts-0036.html#section2
https://support.huaweicloud.com/intl/en-us/develop-modelarts/develop-modelarts-0036.html#section2

Runtime Environment Preview

When creating an algorithm, click the arrow on in the
lower right corner of the page to know the path of the code directory, boot file,
and input and output data in the training container.

Follow-up Operations
After an algorithm is created, use it to create a training job. For details, see
Creating a Training Job.

3.3 Using Custom Images
The subscribed algorithms and preset images can be used in most training
scenarios. In certain scenarios, ModelArts allows you to create custom images to
train models.

Customizing an image requires a deep understanding of containers. Use this
method only if the subscribed algorithms and preset images cannot meet your
requirements. Custom images can be used to train models in ModelArts only after
they are uploaded to the Software Repository for Container (SWR).

You can use custom images for training on ModelArts in either of the following
ways:

● Using a preset image with customization
If you use a preset image to create a training job and you need to modify or
add some software dependencies based on the preset image, you can
customize the preset image. In this case, select a preset image and choose
Customize from the framework version drop-down list box.

● Using a custom image
You can create an image based on the ModelArts image specifications, select
your own image and configure the code directory (optional) and boot
command to create a training job.

NO TE

When you use a custom image to create a training job, the boot command must be
executed in the /home/ma-user directory. Otherwise, the training job may run
abnormally.

Using a Preset Image with Customization
The only difference between this method and creating a training job totally based
on a preset image is that you must select an image. You can create a custom
image based on a preset image.

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

Figure 3-2 Creating an algorithm using a preset image with customization

The process of this method is the same as that of creating a training job based on
a preset image. For example:

● The system automatically injects environment variables.
– PATH=${MA_HOME}/anaconda/bin:${PATH}
– LD_LIBRARY_PATH=${MA_HOME}/anaconda/lib:${LD_LIBRARY_PATH}
– PYTHONPATH=${MA_JOB_DIR}:${PYTHONPATH}

● The selected boot file will be automatically started using Python commands.
Ensure that the Python environment is correct. The PATH environment
variable is automatically injected. Run the following commands to check the
Python version for the training job:
– export MA_HOME=/home/ma-user; docker run --rm {image} $

{MA_HOME}/anaconda/bin/python -V
– docker run --rm {image} $(which python) -V

● The system automatically adds hyperparameters associated with the preset
image.

Using a Custom Image

Figure 3-3 Creating an algorithm using a custom image

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

For details about how to use custom images supported by training, see Using a
Custom Image to Create a CPU- or GPU-based Training Job.

If all used images are customized, do as follows to use a specified Conda
environment to start training:

Training jobs do not run in a shell. Therefore, you are not allowed to run the
conda activate command to activate a specified Conda environment. In this case,
use other methods to start training.

For example, Conda in your custom image is installed in the /home/ma-user/
anaconda3 directory, the Conda environment is python-3.7.10, and the training
script is stored in /home/ma-user/modelarts/user-job-dir/code/train.py. Use a
specified Conda environment to start training in one of the following ways:

● Method 1: Configure the correct DEFAULT_CONDA_ENV_NAME and
ANACONDA_DIR environment variables for the image.
ANACONDA_DIR=/home/ma-user/anaconda3
DEFAULT_CONDA_ENV_NAME=python-3.7.10

Run the python command to start the training script. The following shows an
example:
python /home/ma-user/modelarts/user-job-dir/code/train.py

● Method 2: Use the absolute path of Conda environment Python.
Run the /home/ma-user/anaconda3/envs/python-3.7.10/bin/python
command to start the training script. The following shows an example:
/home/ma-user/anaconda3/envs/python-3.7.10/bin/python /home/ma-user/modelarts/user-job-dir/
code/train.py

● Method 3: Configure the path environment variable.
Configure the bin directory of the specified Conda environment into the path
environment variable. Run the python command to start the training script.
The following shows an example:
export PATH=/home/ma-user/anaconda3/envs/python-3.7.10/bin:$PATH; python /home/ma-user/
modelarts/user-job-dir/code/train.py

● Method 4: Run the conda run -n command.
Run the /home/ma-user/anaconda3/bin/conda run -n python-3.7.10
command to execute the training. The following shows an example:
/home/ma-user/anaconda3/bin/conda run -n python-3.7.10 python /home/ma-user/modelarts/user-
job-dir/code/train.py

NO TE

If there is an error indicating that the .so file is unavailable in the $ANACONDA_DIR/envs/
$DEFAULT_CONDA_ENV_NAME/lib directory, add the directory to LD_LIBRARY_PATH and
place the following command before the preceding boot command:
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/
lib:$LD_LIBRARY_PATH;

For example, the example boot command used in method 1 is as follows:
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/
lib:$LD_LIBRARY_PATH; python /home/ma-user/modelarts/user-job-dir/code/train.py

3.4 Viewing Algorithm Details
1. Log in to the ModelArts console.
2. In the navigation pane, choose Algorithm Management. The My algorithm

page is displayed.

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/docker-modelarts/develop-modelarts-0080.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/develop-modelarts-0080.html

3. In the algorithm list, click the target algorithm name to go to the algorithm
details page.
– On the Basic Information tab, you can view the algorithm information.

Table 3-6 Basic algorithm information

Parameter Description

Name Algorithm name.

ID Unique ID of an algorithm.

Description Algorithm description.
You can click the edit icon to update the description.

Preset image Preset image and its version used by an algorithm.
This parameter is available only for algorithms
created using a preset image.

Custom image Container image used by an algorithm. This
parameter is available only for algorithms created
using a custom engine version or custom image.

Code Directory OBS directory for storing the algorithm code.

Boot File OBS directory for storing the boot file. This
parameter is available only for algorithms created
using a preset image.

Boot Command Boot command of an algorithm created using a
custom image.

Input Input parameters of an algorithm.

Output Output parameters of an algorithm.

Hyperparamete
r

Hyperparameter information of an algorithm.

Supported
Policies

Auto search policy of an algorithm. If this parameter
is left blank, auto search is not supported.
Otherwise, auto search parameters are displayed.

Training
Constraint

Training constraints of an algorithm. If No is
displayed, there is no constraint. Otherwise, the
supported resource types and training scenarios are
displayed.

– On the Training tab, you can view the information about the training

jobs that use the algorithm, such as the training job name and status.
4. On the Basic Information tab, click Edit to modify algorithm information

except the name and ID. After the modification, click Save.

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

3.5 Searching for an Algorithm
ModelArts allows you to quickly search for algorithms by performing the following
operations.

Operation 1: Search for jobs by name, image, code directory, description, and
creation time.

Operation 2: Click the refresh button in the upper right corner to refresh the
algorithm list.

Operation 3: Configure the custom columns and other basic settings.

Figure 3-4 Searching for an algorithm

To sort algorithms in a column, click in the table header of the algorithm list.

3.6 Deleting an Algorithm

Deleting Your Algorithm
Delete unused algorithms.

1. On the Algorithm Management > My algorithm page.
2. click Delete in the Operation column of the target algorithm.
3. In the displayed dialog box, click OK to confirm the deletion.

ModelArts
Model Development 3 Preparing Algorithms

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

4 Performing a Training

4.1 Creating a Training Job
Model training continuously iterates and optimizes model weights. ModelArts
training management allows you to create training jobs, view training status, and
manage training versions. Through model training, you can test various
combinations of model structures, data, and hyperparameters to obtain the
optimal model structure and weight.

Prerequisites
● The data used for training has been uploaded to an OBS directory.
● At least one empty folder has been created in OBS for storing the training

output.

NO TE

OBS buckets are not encrypted. ModelArts does not support encrypted OBS buckets.
When creating an OBS bucket, do not enable bucket encryption.

● The account is not in arrears because resources are consumed when training
jobs are running.

● The OBS directory you use and ModelArts are in the same region.
● Access authorization has been configured. For details, see Configuring Access

Authorization (Global Configuration).
● (Optional) An algorithm is available in Algorithm Management if you want

to use it to create a training job. For details, see Introduction to Algorithm
Preparation.

● (Optional) A custom image has been uploaded to SWR if you want to use it
to create a training job. For details, see How Can I Log In to SWR and Upload
Images to It?

Operation Procedure
To create a training job, follow these steps:

Step 1 Access the page for creating a training job. For details, see Accessing the Page for
Creating a Training Job .

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Step 2 Configure basic information about the training job. For details, see Configuring
Basic Information About a Training Job.

Step 3 Select an algorithm type for creating the training job.
● Use a preset image to create a training job by referring to Choosing a Boot

Mode (Preset Image).
● Use a custom image to create a training job by referring to Choosing a Boot

Mode (Custom Image).
● Use an existing algorithm to create a training job by referring to Choosing an

Algorithm Type (My Algorithm).

Step 4 Configure training parameters, including the input, output, hyperparameters, and
environment variables. For details, see Configuring Training Parameters.

Step 5 Select a resource pool as required. A dedicated resource pool is recommended. For
details about the differences between dedicated resource pools and public
resource pools, see Differences Between Dedicated Resource Pools and Public
Resource Pools.
● Configuring a Public Resource Pool
● Configuring a Dedicated Resource Pool

Step 6 Set tags if you want to manage training jobs by group. For details, see (Optional)
Setting Tags.

Step 7 Perform follow-up procedure. For details, see Follow-Up Procedure.

----End

Accessing the Page for Creating a Training Job
1. Log in to the ModelArts console.
2. In the navigation pane, choose Training Management > Training Jobs. The

training job list is displayed.
3. Click Create Training Job. The Create Training Job page is displayed.

Configuring Basic Information About a Training Job

On the Create Training Job page, set parameters.

Table 4-1 Basic information for creating a training job

Parameter Description

Name Name of a training job, which is mandatory.
The system automatically generates a name. You can
rename it based on the following naming rules:
● The name contains 1 to 64 characters.
● Letters, digits, hyphens (-), and underscores (_) are

allowed.

Description Job description, which helps you learn about the job
information in the training job list.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Choosing a Boot Mode (Preset Image)
If you use a preset image to create a training job, select a boot mode by referring
to Table 4-2.

Table 4-2 Creating a training job using a preset image

Parameter Description

Algorithm Type Select Custom algorithm. This parameter is
mandatory.

Boot Mode Select Preset image and select the preset image
engine and engine version to be used by the training
job.
If you select Customize for the engine version, select a
custom image from Image.

Image This parameter is displayed and mandatory only when
the preset image version is set to Customize.
You can set the container image path in either of the
following ways:
● To select your image or an image shared by others,

click Select on the right and select a container
image for training. The required image must be
uploaded to SWR beforehand.

● To select a public image, enter the address of the
public image in SWR. Enter the image path in the
format of "Organization name/Image name:Version
name". Do not contain the domain name
(swr.<region>.myhuaweicloud.com) in the path
because the system will automatically add the
domain name to the path. For example, if the SWR
address of a public image is
swr.<region>.myhuaweicloud.com/test-image/
tensorflow2_1_1:1.1.1, enter test-images/
tensorflow2_1_1:1.1.1.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Parameter Description

Code Directory Select the OBS directory where the training code file is
stored. This parameter is mandatory.
● Upload code to the OBS bucket beforehand. The

total size of files in the directory cannot exceed 5
GB, the number of files cannot exceed 1000, and the
folder depth cannot exceed 32.

● The training code file is automatically downloaded
to the ${MA_JOB_DIR}/demo-code directory of the
training container when the training job is started.
demo-code is the last-level OBS directory for
storing the code. For example, if Code Directory is
set to /test/code, the training code file is
downloaded to the ${MA_JOB_DIR}/code directory
of the training container.

Boot File Select the Python boot script of the training job in the
code directory. This parameter is mandatory.
ModelArts supports only the boot file written in
Python. Therefore, the boot file must end with .py.

Local Code Directory Specify the local directory of a training container. When
a training starts, the system automatically downloads
the code directory to this directory.
The default local code directory is /home/ma-user/
modelarts/user-job-dir. This parameter is optional.

Work Directory During training, the system automatically runs the cd
command to execute the boot file in this directory.

Choosing a Boot Mode (Custom Image)
If you use a custom image to create a training job, select a boot mode by referring
to Table 4-3.

Table 4-3 Creating a training job using a custom image

Parameter Description

Algorithm Type Select Custom algorithm. This parameter is
mandatory.

Boot Mode Select Custom image. This parameter is mandatory.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Parameter Description

Image Container image path. This parameter is mandatory.
You can set the container image path in either of the
following ways:
● To select your image or an image shared by others,

click Select on the right and select a container
image for training. The required image must be
uploaded to SWR beforehand.

● To select a public image, enter the address of the
public image in SWR. Enter the image path in the
format of "Organization name/Image name:Version
name". Do not contain the domain name
(swr.<region>.myhuaweicloud.com) in the path
because the system will automatically add the
domain name to the path. For example, if the SWR
address of a public image is
swr.<region>.myhuaweicloud.com/test-image/
tensorflow2_1_1:1.1.1, enter test-images/
tensorflow2_1_1:1.1.1.

Code Directory Select the OBS directory where the training code file is
stored. If the custom image does not contain training
code, you need to set this parameter. If the custom
image contains training code, you do not need to set
this parameter.
● Upload code to the OBS bucket beforehand. The

total size of files in the directory cannot exceed 5
GB, the number of files cannot exceed 1000, and the
folder depth cannot exceed 32.

● The training code file is automatically downloaded
to the ${MA_JOB_DIR}/demo-code directory of the
training container when the training job is started.
demo-code is the last-level OBS directory for
storing the code. For example, if Code Directory is
set to /test/code, the training code file is
downloaded to the ${MA_JOB_DIR}/code directory
of the training container.

User ID User ID for running the container. The default value
1000 is recommended.
If the UID needs to be specified, its value must be
within the specified range. The UID ranges of different
resource pools are as follows:
● Public resource pool: 1000 to 65535
● Dedicated resource pool: 0 to 65535

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Parameter Description

Boot Command Command for booting an image. This parameter is
mandatory.
When a training job is running, the boot command is
automatically executed after the code directory is
downloaded.
● If the training boot script is a .py file, train.py for

example, the boot command is as follows.
python ${MA_JOB_DIR}/demo-code/train.py

● If the training boot script is a .sh file, main.sh for
example, the boot command is as follows.
bash ${MA_JOB_DIR}/demo-code/main.sh

You can use semicolons (;) and ampersands (&&) to
combine multiple commands. demo-code in the
command is the last-level OBS directory where the
code is stored. Replace it with the actual one.

Local Code Directory Specify the local directory of a training container. When
a training starts, the system automatically downloads
the code directory to this directory.
The default local code directory is /home/ma-user/
modelarts/user-job-dir. This parameter is optional.

Work Directory During training, the system automatically runs the cd
command to execute the boot file in this directory.

Choosing an Algorithm Type (My Algorithm)
Set Algorithm Type to My algorithm and select an algorithm from the algorithm
list. If no algorithm meets the requirements, you can create an algorithm. For
details, see Creating an Algorithm.

Configuring Training Parameters
Data is obtained from an OBS bucket or dataset for model training. The training
output is also stored in an OBS bucket. When creating a training job, you can
configure parameters such as input, output, hyperparameters, and environment
variables by referring to Table 4-4.

NO TE

The input, output, and hyperparameter parameters of a training job vary depending on the
algorithm type selected during training job creation. If a parameter value is dimmed, the
parameter has been configured in the algorithm code and cannot be modified.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Table 4-4 Parameters for creating a training job

Paramete
r

Sub-
Paramete
r

Description

Input Paramete
r name

The algorithm code reads the training input data based
on the input parameter name.
The recommended value is data_url. The training input
parameters must match the input parameters of the
selected algorithm. For details, see Table 3-3.

Dataset Click Dataset and select the target dataset and its
version in the ModelArts dataset list.
When the training job is started, ModelArts
automatically downloads the data in the input path to
the training container.
NOTE

ModelArts data management is being upgraded and is
invisible to users who have not used data management. It is
recommended that new users store their training data in OBS
buckets.

Data path Click Data path and select the storage path to the
training input data from an OBS bucket.
When the training job is started, ModelArts
automatically downloads the data in the input path to
the training container.

Obtained
from

The following uses training input data_path as an
example.
● If you select Hyperparameters, use this code to

obtain the data:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_path')
args, unknown = parser.parse_known_args()
data_path = args.data_path

● If you select Environment variables, use this code
to obtain the data:
import os
data_path = os.getenv("data_path", "")

Output Paramete
r name

The algorithm code reads the training output data
based on the output parameter name.
The recommended value is train_url. The training
output parameters must match the output parameters
of the selected algorithm. For details, see Table 3-4.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Paramete
r

Sub-
Paramete
r

Description

Data path Click Data path and select the storage path to the
training output data from an OBS bucket. During
training, the system automatically synchronizes files
from the local code directory of the training container
to the data path.
NOTE

The data path can only be an OBS path. To prevent any issues
with data storage, choose an empty directory as the data
path.

Obtained
from

The following uses the training output train_url as an
example.
● If you select Hyperparameters, use this code to

obtain the data:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--train_url')
args, unknown = parser.parse_known_args()
train_url = args.train_url

● If you select Environment variables, use this code
to obtain the data:
import os
train_url = os.getenv("train_url", "")

Predownl
oad

Indicates whether to pre-download the files in the
output directory to a local directory.
● If you set Predownload to No, the system does not

download the files in the training output data path
to a local directory of the training container when
the training job is started.

● If you set Predownload to Yes, the system
automatically downloads the files in the training
output data path to a local directory of the training
container when the training job is started. The larger
the file size, the longer the download time. To avoid
excessive training time, remove any unneeded files
from the local code directory of the training
container as soon as possible. If you want to use
resumable training and incremental training, you
must select Yes.

Hyperpar
ameter

N/A Used for training tuning. This parameter is determined
by the selected algorithm. If hyperparameters have
been defined in the algorithm, all hyperparameters in
the algorithm are displayed.
Hyperparameters can be modified and deleted. The
status depends on the hyperparameter constraint
settings in the algorithm. For details, see Defining
Hyperparameters.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Paramete
r

Sub-
Paramete
r

Description

Environm
ent
Variable

N/A Add environment variables based on service
requirements. For details about the environment
variables preset in the training container, see Viewing
Environment Variables of a Training Container.

Auto
Restart

N/A Once this function is enabled, you can set the number
of restarts and whether to enable Unconditional auto
restart.
After you enable auto restart, ModelArts will handle
any exceptions caused by environmental issues during
a training job. It will either automatically handle the
exception or isolate the faulty node and then restart
the job, which helps to increase the success rate of the
training. To avoid losing training progress and make
full use of compute power, ensure that your code logic
supports resumable training before enabling this
function. For details, see Resumable Training and
Incremental Training.
The value ranges from 1 to 128. The default value is 3.
The value cannot be changed once the training job is
created. Set this parameter based on your needs.
If Unconditional auto restart is selected, the training
job will be restarted unconditionally once the system
detects a training exception. To prevent invalid restarts,
it supports a maximum of three consecutive
unconditional restarts.
If auto restart is triggered during training, the system
records the restart information. You can check the fault
recovery details on the training job details page. For
details, see Viewing Fault Recovery Details.

Configuring a Public Resource Pool
To configure a public resource pool, refer to Table 4-5.

Table 4-5 Configuring a public resource pool for a training job

Parameter Description

Resource Pool Select Public resource pool.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Parameter Description

Resource Type Select the resource type required for training. This
parameter is mandatory. If a resource type has been
defined in the training code, select a proper resource
type based on algorithm constraints. For example, if
the resource type defined in the training code is CPU
and you select other types, the training fails. If some
resource types are invisible or unavailable for selection,
they are not supported.

Specifications Select the required resource specifications based on the
resource type.
If Data path is selected for Input, you can click Check
Input Size on the right to ensure the storage is larger
than the input data size.

NOTICE
The resource flavor GPU:n*tnt004 (n indicates a specific
number) does not support multi-process training.

Compute Nodes Select the number of compute nodes as required. The
default value is 1.
● If only one compute node is used, a single-node

training job is created. ModelArts starts one training
container on this node. The training container
exclusively uses the compute resources of the
selected flavor.

● If more than one compute nodes are used, a
distributed training job is created. For more
information about distributed training
configurations, see Distributed Training Functions.

Persistent Log Saving If you select CPU or GPU flavors, Persistent Log
Saving is available for you to set.
● This function is disabled by default. ModelArts

automatically stores the logs for 30 days. You can
download all logs on the job details page to a local
path.

● After this function is enabled, set Job Log Path. The
system permanently stores training logs to the
specified OBS path.

Job Log Path When enabling Persistent Log Saving, select an empty
OBS directory for Job Log Path to store log files
generated by the training job.
Ensure that you have read and write permissions to the
selected OBS directory.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Parameter Description

Event Notification Indicates whether to enable event notification.
● This function is disabled by default, which means

SMN is disabled.
● After this function is enabled, you will be notified of

specific events, such as job status changes or
suspected suspensions, via an SMS or email.
Notifications will be billed based on SMN pricing. In
this case, you must configure the topic name and
events.
– Topic: topic of event notifications. Click Create

Topic to create a topic on the SMN console.
– Event: events you want to subscribe to. Examples:

JobStarted, JobCompleted, JobFailed,
JobTerminated, and JobHanged.

NOTE
● After you create a topic on the SMN console, add a

subscription to the topic, and confirm the subscription.
Then, you will be notified of events. For details, see Adding
a Subscription.

● SMN charges you for the number of notification messages.
For details, see Billing.

● Only training jobs using GPUs support JobHanged events.

Auto Stop When using paid resources, you can determine whether
to enable auto stop.
● This function is disabled by default, the training job

keeps running until the training is completed.
● If this function is enabled, configure the auto stop

time. The value can be 1 hour, 2 hours, 4 hours, 6
hours, or Customize. The customized time must
range from 1 hour to 720 hours. When you enable
this function, the training stops automatically when
the time limit is reached. The time limit does not
count down when the training is paused.

Configuring a Dedicated Resource Pool
To configure a dedicated resource pool, refer to Table 4-6.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

https://support.huaweicloud.com/intl/en-us/usermanual-smn/smn_ug_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-smn/smn_ug_0008.html
https://support.huaweicloud.com/intl/en-us/productdesc-smn/smn_price.html

Table 4-6 Configuring a dedicated resource pool for a training job

Parameter Description

Resource Pool Select a dedicated resource pool.
If you select a dedicated resource pool, you can view
the status, node specifications, number of idle/
fragmented nodes, number of available/total nodes,
and number of cards of the resource pool. Hover over
View in the Idle/Fragmented Nodes column to check
fragment details and check whether the resource pool
meets the training requirements.

Specifications Select the required resource specifications based on the
resource type.
If Data path is selected for Input, you can click Check
Input Size on the right to ensure the storage is larger
than the input data size.

NOTICE
The resource flavor GPU:n*tnt004 (n indicates a specific
number) does not support multi-process training.

Customized
Specifications

Indicates whether to enable customized specifications.
You can customize resource specifications for training
jobs based on dedicated resource pool specifications to
improve resource pool utilization.
● This function is disabled by default, which means

the dedicated resource pool specifications are used.
● When you enable this function, jobs run with

custom specifications. The custom specifications
should not exceed the node specifications of the
dedicated resource pool that you set. For CPU
specifications, you can only customize the number
of vCPUs and memory. For GPU specifications, you
can customize the number of vCPUs, memory, and
cards.

NOTE
If customized specifications are enabled, the Specifications
parameter is invalid.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Parameter Description

Compute Nodes Select the number of compute nodes as required. The
default value is 1.
● If only one compute node is used, a single-node

training job is created. ModelArts starts one training
container on this node. The training container
exclusively uses the compute resources of the
selected flavor.

● If more than one compute nodes are used, a
distributed training job is created. For more
information about distributed training
configurations, see Distributed Training Functions.

Job Priority When using a dedicated resource pool, you can set the
priority of the training job. The value ranges from 1 to
3. The default priority is 1, and the highest priority is 3.
● By default, the job priority can be set to 1 or 2. After

the permission to set the highest job priority is
configured, the priority can be set to 1 to 3.

● If a training job is in the Pending state for a long
time, you can change the job priority to reduce the
queuing duration. For details, see Priority of a
Training Job.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Parameter Description

SFS Turbo When ModelArts and SFS Turbo are directly connected,
multiple SFS Turbo file systems can be mounted to a
training job to store training data. Click Add Mount
Configuration and set the following parameters:
● File System: Select an SFS Turbo file system.
● Mount Path: Enter the SFS Turbo mounting path in

the training container.
● Storage Location: Specify the SFS Turbo storage

location. If you have configured the folder control
permission, select a storage location. If you have not
configured the folder control permission, retain the
default value / or customize a location.

● Mounting Mode: Permission on the mounted SFS
Turbo file system. This parameter is displayed as
Read/Write or Read-only based on the permission
of the SFS Turbo storage location. If you have not
configured the folder control permission, this
parameter is unavailable.

NOTE
● A file system can be mounted only once and to only one

path. Each mount path must be unique. A maximum of 8
disks can be mounted to a training job.

● To mount an SFS Turbo file system to a training job, you
need to configure network passthrough between
ModelArts and the SFS Turbo file system. For details, see
ModelArts Network.

● The mounting path cannot be a / directory or a default
mounting path, such as /cache and /home/ma-user/
modelarts.

● For details about how to set permissions for SFS Turbo
folders, see Permissions Management.

Persistent Log Saving If you select CPU or GPU flavors, Persistent Log
Saving is available for you to set.
● This function is disabled by default. ModelArts

automatically stores the logs for 30 days. You can
download all logs on the job details page to a local
path.

● After this function is enabled, set Job Log Path. The
system permanently stores training logs to the
specified OBS path.

Job Log Path When enabling Persistent Log Saving, select an empty
OBS directory for Job Log Path to store log files
generated by the training job.
Ensure that you have read and write permissions to the
selected OBS directory.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0137.html

Parameter Description

Event Notification Indicates whether to enable event notification.
● This function is disabled by default, which means

SMN is disabled.
● After this function is enabled, you will be notified of

specific events, such as job status changes or
suspected suspensions, via an SMS or email.
Notifications will be billed based on SMN pricing. In
this case, you must configure the topic name and
events.
– Topic: topic of event notifications. Click Create

Topic to create a topic on the SMN console.
– Event: events you want to subscribe to. Examples:

JobStarted, JobCompleted, JobFailed,
JobTerminated, and JobHanged.

NOTE
● After you create a topic on the SMN console, add a

subscription to the topic, and confirm the subscription.
Then, you will be notified of events. For details, see Adding
a Subscription.

● SMN charges you for the number of notification messages.
For details, see Billing.

● Only training jobs using GPUs support JobHanged events.

Auto Stop When using paid resources, you can determine whether
to enable auto stop.
● This function is disabled by default, the training job

keeps running until the training is completed.
● If this function is enabled, configure the auto stop

time. The value can be 1 hour, 2 hours, 4 hours, 6
hours, or Customize. The customized time must
range from 1 hour to 720 hours. When you enable
this function, the training stops automatically when
the time limit is reached. The time limit does not
count down when the training is paused.

(Optional) Setting Tags
If you want to manage training jobs by group using tags, select Configure Now
for Advanced Configuration to set tags for training jobs. For details about how to
use tags, see How Does ModelArts Use Tags to Manage Resources by Group?

Follow-Up Procedure
After parameter setting for creating a training job, click Submit. On the Confirm
dialog box, click OK.

A training job runs for a period of time. You can go to the training job list to view
the basic information about the training job.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://support.huaweicloud.com/intl/en-us/usermanual-smn/smn_ug_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-smn/smn_ug_0008.html
https://support.huaweicloud.com/intl/en-us/productdesc-smn/smn_price.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_3208.html

● In the training job list, Status of a newly created training job is Pending.
● When the status of a training job changes to Completed, the training job is

finished, and the generated model is stored in the corresponding output path.
● If the status is Failed or Abnormal, click the job name to go to the job details

page and view logs for troubleshooting.

NO TE

You are billed for the resources you choose when your training job runs.

4.2 Viewing Training Job Details
1. Log in to the ModelArts management console.
2. In the navigation pane on the left, choose Training Management > Training

Jobs.
3. In the training job list, click a job name to switch to the training job details

page.
4. On the left of the training job details page, view basic job settings and

algorithm parameters.
– Basic job settings

Table 4-7 Basic job settings

Parameter Description

Job ID Unique ID of a training job

Status Training job status

Created Time when the training job is created

Duration Running duration of a training job

Retries Number of times that a training job automatically
restarts upon a fault during training. This parameter is
available only when Auto Restart is enabled during
training job creation.

Description Description of a training job.
You can click the edit icon to update the description of a
training job.

– Algorithm parameters

Table 4-8 Algorithm parameters

Parameter Description

Algorithm
Name

Algorithm used in a training job You can click the
algorithm name to go to the algorithm details page.

Preset images Preset image used by a training job

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Parameter Description

Code
Directory

OBS path to the code directory of a training job
You can click Edit Code on the right to edit the
training script code in OBS Online Editor. OBS Online
Editor is not available for a training job in the
Pending, Creating, or Running status.

NOTE
If you use the algorithm subscribed in AI Gallery to create a
training job, then this parameter is not supported.

Boot File Location where a boot file is stored.
NOTE

If you use the algorithm subscribed in AI Gallery to create a
training job, then this parameter is not supported.

User ID ID of the user who runs the container.

Local Code
Directory

Path to the training code in the training container

Work
Directory

Path to the training startup file in the training
container

Compute
Nodes

Number of compute nodes

Dedicated
resource pool

Dedicated resource pool information. This parameter is
available only when a training job uses a dedicated
resource pool.

Specifications Training specifications used in a training job

Input - Input
Path

OBS path where the input data is stored

Input -
Parameter
Name

Algorithm code parameter specified by the input path

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Parameter Description

Input -
Obtained
from

Method of obtaining the training job input.

Input - Local
Path (Training
Parameter
Value)

Path for storing the input data in the ModelArts
backend container. After the training is started,
ModelArts downloads the data stored in OBS to the
backend container.

Output -
Output Path

OBS path where the output data is stored

Output -
Parameter
Name

Algorithm code parameter specified by the output
path

Output -
Obtained
from

Method of obtaining the training job output.

Output -
Local Path
(Training
Parameter
Value)

Path for storing the output data in the ModelArts
backend container

Hyperparamet
er

Hyperparameters used in a training job

Environment
Variable

Environment variables for a training job

4.3 Viewing Training Job Events
Any key event of a training job will be recorded at the backend after the training
job is displayed for you. You can check events on the training job details page.

This helps you better understand the running process of a training job and locate
faults more accurately when a task exception occurs. The following job events are
supported:

● Training job created.
● Training job failures:
● Preparations timed out. The possible cause is that the cross-region algorithm

synchronization or creating shared storage timed out.
● The training job is queuing and awaiting resource allocation.
● Failed to be queued.
● The training job starts to run.
● Training job executed.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

● Failed to run the training job.

● The training job is preempted.

● The system detects that your training job may be suspended. Go to the job
details page to view the cause and handle the issue.

● The training job has been restarted.

● The training job has been manually stopped.

● The training job has been stopped. (Maximum running duration: 1 hour)

● The training job has been stopped. (Maximum running duration: 3 hours)

● The training job has been manually deleted.

● Billing information synchronized.

● [worker-0] The training environment is being pre-checked.

● [worker-0] [Duration: second] Pre-check completed.

● [worker-0] [Duration: second] Pre-check failed. Error: xxx

● [worker-0] [Duration: second] Pre-check failed. Error: xxx

● [worker-0] The training code is being downloaded.

● [worker-0] [Duration: second] Training code downloaded.

● [worker-0] [Duration: second] Failed to download the training code. Failure
cause:

● [worker-0] The training input is being downloaded.

● [worker-0] [Duration: second] Training input (parameter: xxx) downloaded.

● [worker-0] [Duration: second] Failed to download the training input
(parameter: xxx). Failure cause:

● [worker-0] Python dependency packages are being installed. Import the
following files:

● [worker-0] [Duration: second] Python dependency packages installed. Import
the following files:

● [worker-0] The training job starts to run.

● [worker-0] Training job executed.

● [worker-0] The training input is being uploaded.

● [worker-0] [Duration: second] Training output (parameter: xxx) uploaded.

During the training process, key events can be manually or automatically
refreshed.

Procedure
1. On the ModelArts console, choose Training Management > Training Jobs

from the navigation pane.

2. In the training job list, click the name of the target job to go to the training
job details page.

3. Click Events to view events.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Figure 4-1 Events

4.4 Training Job Logs

4.4.1 Introduction to Training Job Logs

Overview
Training logs record the runtime process and exception information of training
jobs and provide useful details for fault location. The standard output and
standard error information in your code are displayed in training logs. If you
encounter an issue during the execution of a ModelArts training job, view logs
first. In most scenarios, you can locate the issue based on the error information
reported in logs.

Retention Period
Logs are classified into the following types based on the retention period:

● Real-time logs: generated during training job running and can be viewed on
the ModelArts training job details page.

● Historical logs: After a training job is completed, you can view its historical
logs on the ModelArts training job details page. ModelArts automatically
stores the logs for 30 days.

● Permanent logs: These logs are dumped to your OBS bucket. When creating a
training job, you can enable persistent log saving and set a job log path for
dumping.

Figure 4-2 Enabling Persistent Log Saving

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Real-time logs and historical logs have no difference in content.

Related Chapters
● On the ModelArts training job details page, you can preview logs, download

logs, and search for logs by keyword in the log pane. For details, see Viewing
Training Job Logs.

● ModelArts also enables you to quickly locate and rectify training faults. For
details, see Locating Faults by Analyzing Training Logs.

4.4.2 Common Logs
Common logs include the logs for pip-requirement.txt, training process, and
ModelArts.

Log Type

Table 4-9 Log type

Type Description

Training process log Standard output of your training code

Installation logs for
pip-requirement.txt

If pip-requirement.txt is defined in training code, PIP
package installation logs are generated.

ModelArts logs ModelArts logs are used by O&M personnel to locate
service faults.

File Format

The format of a common log file is as follows. task id is the node ID of a training
job.

Unified log format: modelarts-job-[job id]-[task id].log
Example: log/modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-worker-0.log

● Single-node training jobs generate a log file, and task id defaults to
worker-0.

● Distributed training generates multiple node log files, which are distinguished
by task id, such as worker-0 and worker-1.

Common logs include the logs for pip-requirement.txt, training process, and
ModelArts.

ModelArts Logs

ModelArts logs can be filtered in the common log file modelarts-job-[job id]-
[task id].log using the following keywords: [ModelArts Service Log] or
Platform=ModelArts-Service.

● Type 1: [ModelArts Service Log] xxx
[ModelArts Service Log][init] download code_url: s3://dgg-test-user/snt9-test-cases/mindspore/lenet/

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

● Type 2: time="xxx" level="xxx" msg="xxx" file="xxx" Command=xxx
Component=xxx Platform=xxx
time="2021-07-26T19:24:11+08:00" level=info msg="start the periodic upload task, upload period = 5
seconds " file="upload.go:46" Command=obs/upload Component=ma-training-toolkit
Platform=ModelArts-Service

4.4.3 Viewing Training Job Logs
On the training job details page, you can preview logs, download logs, search for
logs by keyword, and filter system logs in the log pane.

● Previewing logs
You can preview training logs on the system log pane. If multiple compute
nodes are used, you can choose the target node from the drop-down list on
the right.

Figure 4-3 Viewing logs of different compute nodes

If a log file is oversized, the system displays only the latest logs in the log
pane. To view all logs, click the link in the upper part of the log pane, which
will direct you to a new page. Then you will be redirected to a new page.

Figure 4-4 Viewing all logs

NO TE

● If the total size of all logs exceeds 500 MB, the log page may be frozen. In this
case, download the logs to view them locally.

● A log preview link can be accessed by anyone within one hour after it is generated.
You can share the link with others.

● Ensure that no privacy information is contained in the logs. Otherwise,
information leakage may occur.

● Downloading logs
Training logs are retained for only 30 days. To permanently store logs, click
the download icon in the upper right corner of the log pane. You can
download the logs of multiple compute nodes in a batch. You can also enable
Persistent Log Saving and set a log path when you create a training job. In
this way, the logs will be automatically stored in the specified OBS path.
If a training job is created on Ascend compute nodes, certain system logs
cannot be downloaded in the training log pane. To obtain these logs, go to
the Job Log Path you set when you created the training job.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Figure 4-5 Downloading logs

● Searching for logs by keyword
In the upper right corner of the log pane, enter a keyword in the search box
to search for logs, as shown in Figure 4-6.

Figure 4-6 Searching for logs by keyword

The system will highlight the keyword and redirect you between search
results. Only the logs loaded in the log pane can be searched for. If the logs
are not fully displayed (see the message displayed on the page), obtain all
the logs by downloading them or clicking the full log link and then search for
the logs. On the page redirected by the full log link, press Ctrl+F to search for
logs.

● Filtering system logs

Figure 4-7 System logs

If System logs is selected, system logs and user logs are displayed. If System
logs is deselected, only user logs are displayed.

4.4.4 Locating Faults by Analyzing Training Logs
If you encounter an issue during the execution of a ModelArts training job, view
logs first. In most scenarios, you can locate the issue based on the error
information reported in logs.

If a training job fails, ModelArts automatically identifies the failure cause and
displays a message on the log page. The message consists of possible causes,
recommended solutions, and error logs (marked in red).

Figure 4-8 Identifying training faults

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

ModelArts provides possible causes (for reference only) and solutions for some
common training faults. Not all faults can be identified. For a distributed job, only
the analysis result of the current node is displayed. To obtain the failure cause of a
training job, check the analysis results of all nodes used by the training job.

To rectify common training faults, perform the following steps:

1. Rectify the fault based on the analysis and suggestions provided on the log
page.
– Solution 1: A troubleshooting document is provided for you to follow.
– Solution 2: Rebuild the training job and run it again.

2. If the fault persists, analyze the error information in the logs to locate and
rectify the fault.

3. If the provided solutions cannot rectify your fault, you can submit a service
ticket for technical support.

4.5 Cloud Shell

4.5.1 Logging In to a Training Container Using Cloud Shell

Application Scenario
You can use Cloud Shell provided by the ModelArts console to log in to a running
training container.

Constraints
Only dedicated resource pools support Cloud Shell. The training job must be in the
Running state.

Preparation: Assigning the Cloud Shell Permission to an IAM User
1. Log in to the Huawei Cloud management console as a tenant user, hover the

cursor over your username in the upper right corner, and choose Identity and
Access Management from the drop-down list to switch to the IAM
management console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
configure the following parameters.
– Policy Name: Enter a custom policy name, for example, Using Cloud

Shell to access a running job.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:trainJob:exec, and default resources.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Figure 4-9 Creating a custom policy

3. In the navigation pane, choose User Groups. Then, click Authorize in the
Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.
After the configuration, all users in the user group have the permission to use
Cloud Shell to log in to a running training container.
If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is
not in a user group, you can add the user to a user group through the user
group management function.

Using Cloud Shell
1. Configure parameters based on Preparation: Assigning the Cloud Shell

Permission to an IAM User.
2. On the ModelArts console, choose Training Management > Training Jobs

from the navigation pane.
3. In the training job list, click the name of the target job to go to the training

job details page.
4. On the training job details page, click the Cloud Shell tab and log in to the

training container.
Verify that the login is successful, as shown in the following figure.

Figure 4-10 Cloud Shell page

If the job is not running or the permission is insufficient, Cloud Shell cannot
be used. In this case, locate the fault as prompted.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Figure 4-11 Error message

NO TE

A path display exception may occur when you log in to the Cloud Shell page. In this
case, press Enter to rectify the fault.

Figure 4-12 Abnormal path

4.5.2 Keeping a Training Job Running
You can only log in to Cloud Shell when the training job is in Running state. This
section describes how to log in to a running training container through Cloud
Shell.

Using the sleep Command
● For training jobs using a preset image

When creating a training job, set Algorithm Type to Custom algorithm and
Boot Mode to Preset image, add sleep.py to the code directory, and use the
script as the boot file. The training job keeps running for 60 minutes. You can
access the container through Cloud Shell for debugging.
Example of sleep.py
import os
os.system('sleep 60m')

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Figure 4-13 Using a preset image

● For training jobs using a custom image
When creating a training job, set Algorithm Type to Custom algorithm and
Boot Mode to Custom image, and enter sleep 60m in Boot Command. The
training job keeps running for 60 minutes. You can access the container
through Cloud Shell for debugging.

Figure 4-14 Using a custom image

Keeping a Failed Job Running
When creating a training job, add || sleep 5h at the end of the boot command
and start the training job. Run the following command:
cmd || sleep 5h

If the training fails, the sleep command is executed. In this case, you can log in to
the container image through Cloud Shell for debugging.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

NO TE

To debug a multi-node training job in Cloud Shell, you need to switch between worker-0
and worker-1 in Cloud Shell and run the boot command on each node. Otherwise, the task
will wait for other nodes to join.

4.5.3 Preventing Cloud Shell Session from Disconnection
To run a job for a long time, you can use the screen command to prevent the job
from failing due to disconnection.

1. If screen is not installed in the image, run apt-get install screen to install it.
2. Create a screen terminal.

Use -S to create a screen terminal named name.
screen -S name

3. View the created screen terminals.
screen -ls
There are screens on:
2433.pts-3.linux (2013-10-20 16:48:59) (Detached)
2428.pts-3.linux (2013-10-20 16:48:05) (Detached)
2284.pts-3.linux (2013-10-20 16:14:55) (Detached)
2276.pts-3.linux (2013-10-20 16:13:18) (Detached)
4 Sockets in /var/run/screen/S-root.

4. Connect to the screen terminal whose screen_id is 2276.
screen -r 2276

5. Press Ctrl+A+D to exit the screen terminal. After the exit, the screen session is
still active and can be reconnected at any time.

For details about how to use screens, see Screen User's Manual.

4.6 Viewing the Resource Usage of a Training Job

Operations
1. On the ModelArts console, choose Training Management > Training Jobs

from the navigation pane.
2. In the training job list, click the name of the target job to go to the training

job details page.
3. On the training job details page, click the Resource Usages tab to view the

resource usage of the compute nodes. The data of at most the last three days
can be displayed. When the resource usage window is opened, the data is
loading and refreshed periodically.
Operation 1: If a training job uses multiple compute nodes, choose a node
from the drop-down list box to view its metrics.
Operation 2: Click cpuUsage, gpuMemUsage, gpuUtil, memUsage,
npuMemUsage, or npuUtil to show or hide the usage chart of the parameter.
Operation 3: Hover the cursor on the graph to view the usage at the specific
time.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

https://www.gnu.org/software/screen/manual/screen.html#Getting-Started

Figure 4-15 Resource Usages

Table 4-10 Parameters

Parameter Description

cpuUsage CPU usage

gpuMemUs
age

GPU memory usage

gpuUtil GPU usage

memUsage Memory usage

npuMemUs
age

NPU memory usage

npuUtil NPU usage

Alarms of Job Resource Usage
You can view the job resource usage on the training job list page. If the average
GPU/NPU usage of the job's worker-0 instance is lower than 50%, an alarm is
displayed in the training job list.

Figure 4-16 Job resource usage in the job list

The job resource usage here involves only GPU and NPU resources. The method of
calculating the average GPU/NPU usage of a job's worker-0 instance is:
Summarize the usage of each GPU/NPU accelerator card at each time point of the
job's worker-0 instance and calculate the average value.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Improving Job Resource Utilization
● Increasing the value of batch_size increases GPU and NPU usage. You must

decide the batch size that will not cause a memory overflow.
● If the time for reading data in a batch is longer than the time for GPUs or

NPUs to calculate data in a batch, GPU or NPU usage may fluctuate. In this
case, optimize the performance of data reading and data augmentation. For
example, read data in parallel or use tools such as NVIDIA Data Loading
Library (DALI) to improve the data augmentation speed.

● If a model is large and frequently saved, GPU or NPU usage is affected. In this
case, do not save models frequently. Similarly, make sure that other non-
GPU/NPU operations, such as log printing and training metric saving, do not
affect the training process for too much time.

4.7 Evaluation Results
After a training job has been executed, ModelArts evaluates your model and
provides optimization diagnosis and suggestions.

● When you use a built-in algorithm to create a training job, you can view the
evaluation result without any configurations. The system automatically
provides optimization suggestions based on your model metrics. Read the
suggestions and guidance on the page carefully to further optimize your
model.

● For a training job created by writing a training script or using a custom image,
you need to add the evaluation code to the training code so that you can
view the evaluation result and diagnosis suggestions after the training job is
complete.

NO TE

● Only validation sets of the image type are supported.

● You can add the evaluation code only when the training scripts of the following
frequently-used frameworks are used:

● TF-1.13.1-python3.6

● TF-2.1.0-python3.6

● PyTorch-1.4.0-python3.6

This section describes how to use the evaluation code in a training job. To adapt
and modify the training code, three steps are involved, Adding the Output Path,
Copying the Dataset to the Local Host, and Mapping the Dataset Path to OBS.

Adding the Output Path
The code for adding the output path is simple. That is, add a path for storing the
evaluation result file to the code, which is called train_url, that is, the training
output path on the console. Add train_url to the analysis function and use
save_path to obtain train_url. The sample code is as follows:

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('model_url', '', 'path to saved model')
tf.app.flags.DEFINE_string('data_url', '', 'path to output files')
tf.app.flags.DEFINE_string('train_url', '', 'path to output files')
tf.app.flags.DEFINE_string('adv_param_json',

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

 '{"attack_method":"FGSM","eps":40}',
 'params for adversarial attacks')
FLAGS(sys.argv, known_only=True)

...

analyse
res = analyse(
 task_type=task_type,
 pred_list=pred_list,
 label_list=label_list,
 name_list=file_name_list,
 label_map_dict=label_dict,
 save_path=FLAGS.train_url)

Copying the Dataset to the Local Host
Copying a dataset to the local host is to prevent the OBS connection from being
interrupted due to long-time access. Therefore, copy the dataset to the local host
before performing operations.

There are two methods for copying datasets. The recommended method is to use
the OBS path.

● OBS path (recommended)
Call the copy_parallel API of MoXing to copy the corresponding OBS path.

● Dataset in ModelArts data management (manifest file format)
Call the copy_manifest API of MoXing to copy the file to the local host and
obtain the path of the new manifest file. Then, use SDK to parse the new
manifest file.

NO TE

ModelArts data management is being upgraded and is invisible to users who have not used
data management. It is recommended that new users store their training data in OBS
buckets.

if data_path.startswith('obs://'):
 if '.manifest' in data_path:
 new_manifest_path, _ = mox.file.copy_manifest(data_path, '/cache/data/')
 data_path = new_manifest_path
 else:
 mox.file.copy_parallel(data_path, '/cache/data/')
 data_path = '/cache/data/'
 print('------------- download dataset success ------------')

Mapping the Dataset Path to OBS
The actual path of the image file, that is, the OBS path, needs to be entered in the
JSON body. Therefore, after analysis and evaluation are performed on the local
host, the original local dataset path needs to be mapped to the OBS path, and the
new list needs to be sent to the analysis API.

If the OBS path is used as the input of data_url, you only need to replace the
string of the local path.

if FLAGS.data_url.startswith('obs://'):
 for idx, item in enumerate(file_name_list):
 file_name_list[idx] = item.replace(data_path, FLAGS.data_url)

If the manifest file is used, the original manifest file needs to be parsed again to
obtain the list and then the list is sent to the analysis API.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

if or FLAGS.data_url.startswith('obs://'):
 if 'manifest' in FLAGS.data_url:
 file_name_list = []
 manifest, _ = get_sample_list(
 manifest_path=FLAGS.data_url, task_type='image_classification')
 for item in manifest:
 if len(item[1]) != 0:
 file_name_list.append(item[0])

An example code for image classification that can be used to create training jobs
is as follows:
import json
import logging
import os
import sys
import tempfile

import h5py
import numpy as np
from PIL import Image

import moxing as mox
import tensorflow as tf
from deep_moxing.framework.manifest_api.manifest_api import get_sample_list
from deep_moxing.model_analysis.api import analyse, tmp_save
from deep_moxing.model_analysis.common.constant import TMP_FILE_NAME

logging.basicConfig(level=logging.DEBUG)

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('model_url', '', 'path to saved model')
tf.app.flags.DEFINE_string('data_url', '', 'path to output files')
tf.app.flags.DEFINE_string('train_url', '', 'path to output files')
tf.app.flags.DEFINE_string('adv_param_json',
 '{"attack_method":"FGSM","eps":40}',
 'params for adversarial attacks')
FLAGS(sys.argv, known_only=True)

def _preprocess(data_path):
 img = Image.open(data_path)
 img = img.convert('RGB')
 img = np.asarray(img, dtype=np.float32)
 img = img[np.newaxis, :, :, :]
 return img

def softmax(x):
 x = np.array(x)
 orig_shape = x.shape
 if len(x.shape) > 1:
 # Matrix
 x = np.apply_along_axis(lambda x: np.exp(x - np.max(x)), 1, x)
 denominator = np.apply_along_axis(lambda x: 1.0 / np.sum(x), 1, x)
 if len(denominator.shape) == 1:
 denominator = denominator.reshape((denominator.shape[0], 1))
 x = x * denominator
 else:
 # Vector
 x_max = np.max(x)
 x = x - x_max
 numerator = np.exp(x)
 denominator = 1.0 / np.sum(numerator)
 x = numerator.dot(denominator)
 assert x.shape == orig_shape
 return x

def get_dataset(data_path, label_map_dict):

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

 label_list = []
 img_name_list = []
 if 'manifest' in data_path:
 manifest, _ = get_sample_list(
 manifest_path=data_path, task_type='image_classification')
 for item in manifest:
 if len(item[1]) != 0:
 label_list.append(label_map_dict.get(item[1][0]))
 img_name_list.append(item[0])
 else:
 continue
 else:
 label_name_list = os.listdir(data_path)
 label_dict = {}
 for idx, item in enumerate(label_name_list):
 label_dict[str(idx)] = item
 sub_img_list = os.listdir(os.path.join(data_path, item))
 img_name_list += [
 os.path.join(data_path, item, img_name) for img_name in sub_img_list
]
 label_list += [label_map_dict.get(item)] * len(sub_img_list)
 return img_name_list, label_list

def deal_ckpt_and_data_with_obs():
 pb_dir = FLAGS.model_url
 data_path = FLAGS.data_url

 if pb_dir.startswith('obs://'):
 mox.file.copy_parallel(pb_dir, '/cache/ckpt/')
 pb_dir = '/cache/ckpt'
 print('------------- download success ------------')
 if data_path.startswith('obs://'):
 if '.manifest' in data_path:
 new_manifest_path, _ = mox.file.copy_manifest(data_path, '/cache/data/')
 data_path = new_manifest_path
 else:
 mox.file.copy_parallel(data_path, '/cache/data/')
 data_path = '/cache/data/'
 print('------------- download dataset success ------------')
 assert os.path.isdir(pb_dir), 'Error, pb_dir must be a directory'
 return pb_dir, data_path

def evalution():
 pb_dir, data_path = deal_ckpt_and_data_with_obs()
 index_file = os.path.join(pb_dir, 'index')
 try:
 label_file = h5py.File(index_file, 'r')
 label_array = label_file['labels_list'][:].tolist()
 label_array = [item.decode('utf-8') for item in label_array]
 except Exception as e:
 logging.warning(e)
 logging.warning('index file is not a h5 file, try json.')
 with open(index_file, 'r') as load_f:
 label_file = json.load(load_f)
 label_array = label_file['labels_list'][:]
 label_map_dict = {}
 label_dict = {}
 for idx, item in enumerate(label_array):
 label_map_dict[item] = idx
 label_dict[idx] = item
 print(label_map_dict)
 print(label_dict)

 data_file_list, label_list = get_dataset(data_path, label_map_dict)

 assert len(label_list) > 0, 'missing valid data'
 assert None not in label_list, 'dataset and model not match'

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

 pred_list = []
 file_name_list = []
 img_list = []

 for img_path in data_file_list:
 img = _preprocess(img_path)
 img_list.append(img)
 file_name_list.append(img_path)

 config = tf.ConfigProto()
 config.gpu_options.allow_growth = True
 config.gpu_options.visible_device_list = '0'
 with tf.Session(graph=tf.Graph(), config=config) as sess:
 meta_graph_def = tf.saved_model.loader.load(
 sess, [tf.saved_model.tag_constants.SERVING], pb_dir)
 signature = meta_graph_def.signature_def
 signature_key = 'predict_object'
 input_key = 'images'
 output_key = 'logits'
 x_tensor_name = signature[signature_key].inputs[input_key].name
 y_tensor_name = signature[signature_key].outputs[output_key].name
 x = sess.graph.get_tensor_by_name(x_tensor_name)
 y = sess.graph.get_tensor_by_name(y_tensor_name)
 for img in img_list:
 pred_output = sess.run([y], {x: img})
 pred_output = softmax(pred_output[0])
 pred_list.append(pred_output[0].tolist())

 label_dict = json.dumps(label_dict)
 task_type = 'image_classification'

 if FLAGS.data_url.startswith('obs://'):
 if 'manifest' in FLAGS.data_url:
 file_name_list = []
 manifest, _ = get_sample_list(
 manifest_path=FLAGS.data_url, task_type='image_classification')
 for item in manifest:
 if len(item[1]) != 0:
 file_name_list.append(item[0])
 for idx, item in enumerate(file_name_list):
 file_name_list[idx] = item.replace(data_path, FLAGS.data_url)
 # analyse
 res = analyse(
 task_type=task_type,
 pred_list=pred_list,
 label_list=label_list,
 name_list=file_name_list,
 label_map_dict=label_dict,
 save_path=FLAGS.train_url)

if __name__ == "__main__":
 evalution()

4.8 Viewing Training Tags
You can add tags to a training job for quick search.

1. On the ModelArts console, choose Training Management > Training Jobs
from the navigation pane.

2. In the training job list, click the name of the target job to go to the training
job details page.

3. Click Tags.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Tags can be added, modified, and deleted. For details about how to use tags,
see How Does ModelArts Use Tags to Manage Resources by Group?

Figure 4-17 Viewing training tags

NO TE

You can add up to 20 tags to a training job.

4.9 Viewing Fault Recovery Details
When a training job fault occurs (such as process-level recovery, POD-level
rescheduling, and job-level rescheduling), the Fault Recovery Details tab appears
on the job details page, recording the start and stop details of the training job.

1. On the ModelArts console, choose Training Management > Training Jobs
from the navigation pane.

2. In the training job list, click the name of the target job to go to the training
job details page.

3. On the training job details page, click the Fault Recovery Details tab to view
the fault recovery information.

Figure 4-18 Viewing fault recovery details

4.10 Viewing Environment Variables of a Training
Container

What Is an Environment Variable

This section describes environment variables preset in a training container. The
environment variables include:

● Path environment variables
● Environment variables of a distributed training job
● Nvidia Collective multi-GPU Communication Library (NCCL) environment

variables
● OBS environment variables
● Environment variables of the PIP source

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_3208.html

● Environment variables of the API Gateway address
● Environment variables of job metadata

Configuring Environment Variables

When you create a training job, you can add environment variables or modify
environment variables preset in the training container.

Environment Variables Preset in a Training Container

The following tables list environment variables preset in a training container,
including Table 4-11, Table 4-12, Table 4-13, Table 4-14, Table 4-15, Table 4-16,
and Table 4-17.

The environment variable values are examples.

Table 4-11 Path environment variables

Variable Description Example

PATH Executable file paths PATH=/usr/local/bin:/usr/local/
cuda/bin:/usr/local/sbin:/usr/
local/bin:/usr/sbin:/usr/bin:/
sbin:/bin

LD_LIBRARY_P
ATH

Dynamic load library
paths

LD_LIBRARY_PATH=/usr/local/
seccomponent/lib:/usr/local/
cuda/lib64:/usr/local/cuda/
compat:/root/miniconda3/
lib:/usr/local/lib:/usr/local/
nvidia/lib64

LIBRARY_PATH Static library paths LIBRARY_PATH=/usr/local/cuda/
lib64/stubs

MA_HOME Main directory of a
training job

MA_HOME=/home/ma-user

MA_JOB_DIR Parent directory of the
training algorithm folder

MA_JOB_DIR=/home/ma-user/
modelarts/user-job-dir

MA_MOUNT_P
ATH

Path mounted to a
ModelArts training
container, which is used
to temporarily store
training algorithms,
algorithm input,
algorithm output, and
logs

MA_MOUNT_PATH=/home/ma-
user/modelarts

MA_LOG_DIR Training log directory MA_LOG_DIR=/home/ma-user/
modelarts/log

MA_SCRIPT_IN
TERPRETER

Training script interpreter MA_SCRIPT_INTERPRETER=

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Variable Description Example

WORKSPACE Training algorithm
directory

WORKSPACE=/home/ma-user/
modelarts/user-job-dir/code

Table 4-12 Environment variables of a distributed training job

Variable Description Example

MA_CURRENT_
IP

IP address of a job
container.

MA_CURRENT_IP=192.168.23.38

MA_NUM_GPU
S

Number of accelerator
cards in a job container.

MA_NUM_GPUS=8

MA_TASK_NAM
E

Name of a job container,
for example:
● worker in MindSpore

and PyTorch.
● learner or worker in

reinforcement learning
engines.

● ps or worker in
TensorFlow.

MA_TASK_NAME=worker

MA_NUM_HOS
TS

Number of compute
nodes, which is
automatically obtained
from Compute Nodes.

MA_NUM_HOSTS=4

VC_TASK_INDE
X

Container index, starting
from 0. This parameter is
invalid for single-node
training. In multi-node
training jobs, you can use
this parameter to
determine the algorithm
logic of the container.

VC_TASK_INDEX=0

VC_WORKER_N
UM

Compute nodes required
for a training job.

VC_WORKER_NUM=4

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Variable Description Example

VC_WORKER_H
OSTS

Domain name of each
node for multi-node
training. Use commas (,)
to separate the domain
names in sequence. You
can obtain the IP address
through domain name
resolution.

VC_WORKER_HOSTS=modelarts
-job-
a0978141-1712-4f9b-8a83-0000
00000000-worker-0.modelarts-
job-
a0978141-1712-4f9b-8a83-0000
00000000,modelarts-job-
a0978141-1712-4f9b-8a83-0000
00000000-worker-1.ob-
a0978141-1712-4f9b-8a83-0000
00000000,modelarts-job-
a0978141-1712-4f9b-8a83-0000
00000000-worker-2.modelarts-
job-
a0978141-1712-4f9b-8a83-0000
00000000,ob-
a0978141-1712-4f9b-8a83-0000
00000000-worker-3.modelarts-
job-
a0978141-1712-4f9b-8a83-0000
00000000

$
{MA_VJ_NAME}
-$
{MA_TASK_NA
ME}-N.$
{MA_VJ_NAME}

Communication domain
name of a node. For
example, the
communication domain
name of node 0 is $
{MA_VJ_NAME}-$
{MA_TASK_NAME}-0.$
{MA_VJ_NAME}.
N indicates the number
of compute nodes.

For example, if there are four
compute nodes, the environment
variables are as follows:
${MA_VJ_NAME}-$
{MA_TASK_NAME}-0.$
{MA_VJ_NAME}
${MA_VJ_NAME}-$
{MA_TASK_NAME}-1.$
{MA_VJ_NAME}
${MA_VJ_NAME}-$
{MA_TASK_NAME}-2.$
{MA_VJ_NAME}
${MA_VJ_NAME}-$
{MA_TASK_NAME}-3.$
{MA_VJ_NAME}

Table 4-13 NCCL environment variables

Variable Description Example

NCCL_VERSION NCCL version NCCL_VERSION=2.7.8

NCCL_DEBUG NCCL log level NCCL_DEBUG=INFO

NCCL_IB_HCA InfiniBand NIC to use for
communication

NCCL_IB_HCA=^mlx5_bond_0

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Variable Description Example

NCCL_SOCKET_
IFNAME

IP interface to use for
communication

NCCL_SOCKET_IFNAME=bond0,
eth0

Table 4-14 OBS environment variables

Variable Description Example

S3_ENDPOINT OBS endpoint -

S3_VERIFY_SSL Whether to use SSL to
access OBS

S3_VERIFY_SSL=0

S3_USE_HTTPS Whether to use HTTPS to
access OBS

S3_USE_HTTPS=1

Table 4-15 Environment variables of the PIP source and API Gateway address

Variable Description Example

MA_PIP_HOST Domain name of the PIP
source

MA_PIP_HOST=repo.myhuaweic
loud.com

MA_PIP_URL Address of the PIP source MA_PIP_URL=http://
repo.myhuaweicloud.com/
repository/pypi/simple/

MA_APIGW_EN
DPOINT

ModelArts API Gateway
address

MA_APIGW_ENDPOINT=https:/
/modelarts.region.cn-
east-3.myhuaweicloud.com

Table 4-16 Environment variables of job metadata

Variable Description Example

MA_CURRENT_I
NSTANCE_NAM
E

Name of the current node
for multi-node training

MA_CURRENT_INSTANCE_NAM
E=modelarts-job-
a0978141-1712-4f9b-8a83-000
000000000-worker-1

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Table 4-17 Precheck environment variables

Variable Description Example

MA_SKIP_IMAGE
_DETECT

Whether to enable
ModelArts precheck. The
default value is 1, which
indicates that the pre-
check is enabled; the
value 0 indicates that the
pre-check is disabled.
It is a good practice to
enable precheck to detect
node and driver faults
before they affect
services.

1

4.11 Stopping, Rebuilding, or Searching for a Training
Job

Saving As an Algorithm

To modify the algorithm of a training job, click Save As Algorithm in the upper
right corner of the training job details page.

On the Algorithms page, the algorithm parameters for the last training job are
automatically set. You can modify the settings.

NO TE

This function is not supported for algorithms subscribed in AI Gallery.

Stopping a Training Job

In the training job list, click Stop in the Operation column of a training job that is
in creating, pending, or running state to stop the job.

After a training job is stopped, its billing stops on ModelArts.

A training job in completed, failed, terminated, or abnormal state cannot be
stopped.

Rebuilding a Training Job

If you are not satisfied with a created training job, click Rebuild in the Operation
column to rebuild it. The page for creating a training job is displayed. On this
page, the parameter settings for the previous training job are automatically
retained. You only need to modify certain parameter settings.

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Searching for a Training Job
If you log in to ModelArts using an IAM account, all training jobs under this
account are displayed in the training job list. To quickly search for a training job,
use the following methods:

Method 1: Click Only my jobs. Then, only jobs created under the current IAM user
account are displayed in the training job list.

Method 2: Search for jobs by name, ID, job type, status, creation time, algorithm,
and resource pool.

Method 3: Click the refresh button in the upper right corner of the job list to
refresh it.

Method 4: Configure the custom columns and other basic settings.

Figure 4-19 Searching for a training job

4.12 Releasing Training Job Resources
Release resources of a training job when not in use to avoid unnecessary charges.
● On the Training Jobs page, click Delete in the Operation column. In the

displayed dialog box, click OK to delete the training job.
● Go to OBS and delete the OBS bucket and files used by the training job.

After the resources are released, check the resource usage on the Dashboard
page.

Figure 4-20 Checking the resource usage

ModelArts
Model Development 4 Performing a Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

5 Advanced Training Operations

5.1 Automatic Recovery from a Training Fault

5.1.1 Training Fault Tolerance Check
During model training, a training failure may occur due to a hardware fault. For
hardware faults, ModelArts provides fault tolerance check to isolate faulty nodes
to improve user experience in training.

The fault tolerance check involves environment pre-check and periodic hardware
check. If any fault is detected during either of the checks, ModelArts automatically
isolates the faulty hardware and issues the training job again. In distributed
training, the fault tolerance check will be performed on all compute nodes used by
the training job.

The following shows four failure scenarios, among which the failure in scenario 4
is not caused by a hardware fault. You can enable fault tolerance in the other
three scenarios to automatically resume the training job.

● Scenario 1: The environment pre-check fails, and the hardware is faulty. Then,
ModelArts automatically isolates all faulty nodes and issues the training job
again.

ModelArts
Model Development 5 Advanced Training Operations

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Figure 5-1 Pre-check failure and hardware fault

● Scenario 2: The environment pre-check fails but the hardware is functional.
Then, ModelArts randomly allocates nodes and issues the training job again.

Figure 5-2 Pre-check failure but functional hardware

● Scenario 3: The environment pre-check is successful and the user service
starts. A hardware fault occurs and the user service exits unexpectedly. Then,
ModelArts automatically isolates all faulty nodes and issues the training job
again.

ModelArts
Model Development 5 Advanced Training Operations

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Figure 5-3 Service failure and hardware fault

● Scenario 4: The environment pre-check is successful and the user service
starts. The hardware is functional. A fault occurs in the user service, the
training job ends in the failure state.

Figure 5-4 Service failure and functional hardware

After the faulty node is isolated, ModelArts creates a training job on new compute
nodes. If the resources provided by the resource pool are limited, the re-issued
training job will be queued with the highest priority. If the waiting time exceeds 30
minutes, the training job will automatically exit. This indicates that the resources
are so limited that the training job cannot start. In this case, buy a dedicated
resource pool to obtain dedicated resources.

If you use a dedicated resource pool to create a training job, the faulty nodes
identified during the fault tolerance check will be removed. The system
automatically adds healthy compute nodes to the dedicated resource pool. (This
function is coming soon.)

More details of a fault tolerance check:

ModelArts
Model Development 5 Advanced Training Operations

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

1. Enabling Fault Tolerance Check
2. Check Items and Conditions
3. Effect of a Fault Tolerance Check
4. After the environment pre-check is successful, any hardware fault will

interrupt the user service. Add the reload ckpt code logic to the training so
that the pre-trained model saved before the training is interrupted can be
obtained. For details, see Resumable Training and Incremental Training.

Enabling Fault Tolerance Check
To enable fault tolerance check, enable auto restart when creating a training job.

● Configure fault tolerance check on the ModelArts management console:
Enable Auto Restart on the ModelArts management console. Auto Restart is
disabled by default, indicating that the job will not be re-issued and the
environment pre-check will not be enabled. After Auto Restart is enabled, the
number of restart retries ranges from 1 to 128.

Figure 5-5 Auto Restart

● Configure fault tolerance check using an API:
Enable auto restart upon a fault using an API. When creating a training job,
configure the fault-tolerance/job-retry-num field in annotations of the
metadata field.
If the fault-tolerance/job-retry-num field is added, auto restart is enabled.
The value can be an integer ranging from 1 to 128. specifying the maximum
number of times that a job can be re-issued. If this hyperparameter is not
specified, the default value 0 is used, indicating that the job will not be re-
issued and the environment pre-check will not be enabled.

Figure 5-6 Setting the API

ModelArts
Model Development 5 Advanced Training Operations

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

Check Items and Conditions
Check Item Item

(Log
Keywor
d)

Execution
Condition

Requirements for a Check

Domain
name
detection

dns None The domain names of the
volcano containers in the .host
file in /etc/volcano are
successfully resolved.

Disk size -
Container
root directory

disk-size
root

None The directory is greater than 32
GB.

Disk size
- /dev/shm

disk-size
shm

None The directory is greater than 1
GB.

Disk size - /
cache

disk-size
cache

None The directory is greater than 32
GB.

ulimit check ulimit An IB network is
used.

● Maximum locked memory >
16000

● Open files > 1000000
● Stack size > 8000
● Maximum user processes >

1000000

GPU check gpu-
check

GPU and the v2
training engine are
used.

GPUs are detected.

Effect of a Fault Tolerance Check
● If the fault tolerance check is passed, the logs of the check items will be

recorded, indicating that the check items are successful. You can search for
the keyword item in the log file. A fault tolerance check minimizes reported
runtime faults.

● If a fault tolerance check fails, check failure logs will be recorded. You can
search for the keyword item in the log file to view the failure information.

ModelArts
Model Development 5 Advanced Training Operations

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

If the number of job restarts does not reach the specified time, the job will be
automatically issued again. You can search for keywords error,exiting to
obtain the logs recording a restarted job that ends with a failure.

Using reload ckpt to Resume an Interrupted Training

With fault tolerance enabled, if a training job is restarted due to a hardware fault,
you can obtain the pre-trained model in the code to restore the training to the
state before the restart. To do so, add reload ckpt to the code. For details, see
Resumable Training and Incremental Training.

5.1.2 Unconditional Auto Restart

Context

Unexpected situations during training can lead to failures and delays in restarting
the job, resulting in longer training periods. To avoid these issues, use
unconditional auto restart. Unconditional auto restart means that the system will
automatically restart a failed training job, regardless of the cause. This feature can
improve the success rate of training and increase job stability. To prevent invalid
restarts, it supports a maximum of three consecutive unconditional restarts.

To avoid losing training progress and make full use of compute power, ensure that
your code logic supports resumable training before enabling this function. For
details, see Resumable Training and Incremental Training.

If auto restart is triggered during training, the system records the restart
information. You can check the fault recovery details on the training job details
page. For details, see Viewing Fault Recovery Details.

Enabling Unconditional Auto Restart

You can enable unconditional auto restart either on the console or through an API.

● Using the console
On the Create Training Job page, enable Auto Restart and select
Unconditional auto restart. If Unconditional auto restart is enabled, the
training job will be restarted unconditionally once the system detects a
training exception. If you enable auto restart but do not select Unconditional
auto restart, the training job will only be automatically restarted if it
encounters environmental issues. In case of any other problems, the status of
the training job will become Failed.

Figure 5-7 Enabling unconditional auto restart

● Using an API

ModelArts
Model Development 5 Advanced Training Operations

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

When creating a training job through an API, input the fault-tolerance/job-
retry-num and fault-tolerance/job-unconditional-retry fields in
annotations of the metadata field. To enable auto restart, set fault-
tolerance/job-retry-num to a value ranging from 1 to 128. To enable
unconditional auto restart, set fault-tolerance/job-unconditional-retry to
true.
{
 "kind": "job",
 "metadata": {
 "annotations": {
 "fault-tolerance/job-retry-num": "8",
 "fault-tolerance/job-unconditional-retry": "true"
 }
 }
}

5.2 Resumable Training and Incremental Training

Overview
Resumable training indicates that an interrupted training job can be automatically
resumed from the checkpoint where the previous training was interrupted. This
method is applicable to model training that takes a long time.

Incremental training is a method in which input data is continuously used to
extend the existing model's knowledge to further train the model.

Checkpoints are used to resume model training or incrementally train a model.

During model training, training results (including but not limited to epochs, model
weights, optimizer status, and scheduler status) are continuously saved. In this
way, an interrupted training job can be automatically resumed from the
checkpoint where the previous training was interrupted.

To resume a training job, load a checkpoint and use the checkpoint information to
initialize the training status. To do so, add reload ckpt to the code.

Resumable Training and Incremental Training in ModelArts
To resume model training or incrementally train a model in ModelArts, configure
Training Output.

When creating a training job, set the data path to the training output, save
checkpoints in this data path, and set Predownload to Yes. If you set
Predownload to Yes, the system automatically downloads the checkpoint file in
the training output data path to a local directory of the training container before
the training job is started.

Figure 5-8 Configuring training output

ModelArts
Model Development 5 Advanced Training Operations

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Enable fault tolerance check (auto restart) for resumable training. On the training
job creation page, enable Auto Restart. If the environment pre-check fails, the
hardware is not functional, or the training job fails, ModelArts will automatically
issue the training job again.

reload ckpt for PyTorch
1. Use either of the following methods to save a PyTorch model.

– Save model parameters only.
state_dict = model.state_dict()
torch.save(state_dict, path)

– Save the entire model (not recommended).
torch.save(model, path)

2. Save the data generated during model training at regular intervals based on
steps and time.
The data includes the network weight, optimizer weight, and epoch, which
will be used to resume the interrupted training.
 checkpoint = {
 "net": model.state_dict(),
 "optimizer": optimizer.state_dict(),
 "epoch": epoch
 }
 if not os.path.isdir('model_save_dir'):
 os.makedirs('model_save_dir')
 torch.save(checkpoint,'model_save_dir/ckpt_{}.pth'.format(str(epoch)))

3. Check the complete code example below.
import os
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--train_url", type=str)
args, unparsed = parser.parse_known_args()
args = parser.parse_known_args()
train_url is set to /home/ma-user/modelarts/outputs/train_url_0.
train_url = args.train_url

Check whether there is a model file in the output path. If there is no file, the model will be trained
from the beginning by default. If there is a model file, the CKPT file with the maximum epoch value
will be loaded as the pre-trained model.
if os.listdir(train_url):
 print('> load last ckpt and continue training!!')
 last_ckpt = sorted([file for file in os.listdir(train_url) if file.endswith(".pth")])[-1]
 local_ckpt_file = os.path.join(train_url, last_ckpt)
 print('last_ckpt:', last_ckpt)
 # Load the checkpoint.
 checkpoint = torch.load(local_ckpt_file)
 # Load the parameters that can be learned by the model.
 model.load_state_dict(checkpoint['net'])
 # Load optimizer parameters.
 optimizer.load_state_dict(checkpoint['optimizer'])
 # Obtain the saved epoch. The model will continue to be trained based on the epoch value.
 start_epoch = checkpoint['epoch']
start = datetime.now()
total_step = len(train_loader)
for epoch in range(start_epoch + 1, args.epochs):
 for i, (images, labels) in enumerate(train_loader):
 images = images.cuda(non_blocking=True)
 labels = labels.cuda(non_blocking=True)
 # Forward pass
 outputs = model(images)
 loss = criterion(outputs, labels)
 # Backward and optimize
 optimizer.zero_grad()
 loss.backward()

ModelArts
Model Development 5 Advanced Training Operations

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

 optimizer.step()
 ...

 # Save the network weight, optimizer weight, and epoch during model training.
 checkpoint = {
 "net": model.state_dict(),
 "optimizer": optimizer.state_dict(),
 "epoch": epoch
 }
 if not os.path.isdir(train_url):
 os.makedirs(train_url)
 torch.save(checkpoint, os.path.join(train_url, 'ckpt_best_{}.pth'.format(epoch)))

5.3 Detecting Training Job Suspension

Overview
A training job may be suspended due to unknown reasons. If the suspension
cannot be detected promptly, resources cannot be released, leading to a waste. To
minimize resource cost and improve user experience, ModelArts provides
suspension detection for training jobs. With this function, suspension can be
automatically detected and displayed on the log details page. You can also enable
notification so that you can be promptly notified of job suspension.

Detection Rules
Determine whether a job is suspended based on the monitored job process status
and resource usage. A process is started to periodically monitor the changes of the
two metrics.

● Job process status: If the process I/O of a training job changes, the next
detection period starts. If the process I/O of the job remains unchanged in
multiple detection periods, the resource usage detection starts.

● Resource usage: If the process I/O remains unchanged, the system collects the
GPU usage within a certain period of time and determines whether the
resource usage changes based on the variance and median of the GPU usage
within the period. If the GPU usage is not changed, the job is suspended.

Constraints
Suspension can be detected only for training jobs that run on GPUs.

Procedure
Suspension detection is automatically performed during job running. No additional
configuration is required. After detecting that a job is suspended, the system
displays a message on the training job details page, indicating that the job may be
suspended. If you want to be notified of suspension (by SMS or email), enable
event notification on the job creation page.

5.4 Priority of a Training Job
When using a new-version dedicated resource pool for training jobs, you can set
the job priority when creating a training job or adjust the priority when a job is in

ModelArts
Model Development 5 Advanced Training Operations

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

the Pending state for a long time. By adjusting the job priority, you can reduce the
job queuing duration.

Overview
Some training tasks, such as unimportant tests or experiments, are of low priority.
In this case, you need to prioritize training tasks (jobs). A task with a higher
priority is queued earlier than a task with a lower priority.

You can adjust the job execution sequence by configuring the priority of training
jobs to ensure normal running of important services at peak hours.

Constraints
● You can set the priority of a training job only if it is created using a new-

version dedicated resource pool.
● The value ranges from 1 to 3. The default priority is 1, and the highest priority

is 3. By default, the job priority can be set to 1 or 2. After the permission to
set the highest job priority is configured, the priority can be set to 1 to 3.

Configuring the Priority
Set the priority when you create a training job. The value ranges from 1 to 3. The
default priority is 1, and the highest priority is 3.

Changing the Priority
On the Training Jobs page, locate a training job in the Pending state and click

 in the Job Priority column. In the dialog box that appears, change the priority
and click OK.

Figure 5-9 Changing the job priority

5.5 Permission to Set the Highest Job Priority
You can configure the priority when you create a training job using a new-version
dedicated resource pool. You can change the priority of a pending job. The value
ranges from 1 to 3. The default priority is 1, and the highest priority is 3. By
default, the job priority can be set to 1 or 2. After the permission to set the
highest job priority is configured, the priority can be set to 1 to 3.

ModelArts
Model Development 5 Advanced Training Operations

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Assigning the Permission to Set the Highest Job Priority to an IAM User
1. Log in to the Huawei Cloud management console as a tenant user, hover the

cursor over your username in the upper right corner, and choose Identity and
Access Management from the drop-down list to switch to the IAM
management console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
configure the following parameters.
– Policy Name: Enter a custom policy name, for example, Allowing Users

to Set the Highest Job Priority.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:trainJob:setHighPriority, and default resources.

Figure 5-10 Creating a custom policy

3. In the navigation pane, choose User Groups. Then, click Authorize in the
Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.
After the configuration, all users in the user group have the permission to use
Cloud Shell to log in to a running training container.
If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is
not in a user group, you can add the user to a user group through the user
group management function.

ModelArts
Model Development 5 Advanced Training Operations

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

6 Distributed Training

6.1 Distributed Training Functions
ModelArts provides the following capabilities:

● Extensive built-in images, meeting your requirements

● Custom development environments set up using built-in images

● Extensive tutorials, helping you quickly understand distributed training

● Distributed training debugging in development tools such as PyCharm, VS
Code, and JupyterLab

Constraints
● If the instance flavors are changed, you can only perform single-node

debugging. You cannot perform distributed debugging or submit remote
training jobs.

● Only the PyTorch and MindSpore AI frameworks can be used for multi-node
distributed debugging. If you want to use MindSpore, each node must be
equipped with eight cards.

● The OBS paths in the debugging code should be replaced with your OBS
paths.

● PyTorch is used to write debugging code in this document. The process is the
same for different AI frameworks. You only need to modify some parameters.

Related Chapters
● Single-Node Multi-Card Training Using DataParallel: describes single-node

multi-card training using DataParallel, and corresponding code modifications.

● Multi-Node Multi-Card Training Using DistributedDataParallel : describes
multi-node multi-card training using DistributedDataParallel, and
corresponding code modifications.

● Distributed Debugging Adaptation and Code Example: describes the
procedure and code example of distributed debugging adaptation.

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

● Sample Code of Distributed Training: provides a complete code sample of
distributed parallel training for the classification task of ResNet18 on the
CIFAR-10 dataset.

● Debugging a Training Job: describes how to use the SDK to debug a single-
node or multi-node training job on the ModelArts development environment.

6.2 Single-Node Multi-Card Training Using DataParallel
This section describes how to perform single-node multi-card parallel training
based on the PyTorch engine.

For details about the distributed training using the MindSpore engine, see the
MindSpore official website.

Training Process
The process of single-node multi-card parallel training is as follows:

1. A model is copied to multiple GPUs.
2. Data of each batch is distributed evenly to each worker GPU.
3. Each GPU does its own forward propagation and an output is obtained.
4. The master GPU with device ID 0 collects the output of each GPU and

calculates the loss.
5. The master GPU distributes the loss to each worker GPU. Each GPU does its

own backward propagation and calculates the gradient.
6. The master GPU collects gradients, updates parameter settings, and

distributes the settings to each worker GPU.

The detailed flowchart is as follows.

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0449.html
https://www.mindspore.cn/docs/programming_guide/en/r1.5/distributed_training.html
https://www.mindspore.cn/docs/programming_guide/en/r1.5/distributed_training.html

Figure 6-1 Single-node multi-card parallel training

Advantages and Disadvantages
● Straightforward coding: Only one line of code needs to be modified.

● Bottlenecks in communication: The master GPU is used to update and
distribute parameter settings, which causes high communication costs.

● Unbalanced GPU loading: The master GPU is used to summarize outputs,
calculate loss, and update weights. Therefore, the GPU memory and usage are
higher than those of other GPUs.

Code Modifications

Model distribution: DataParallel(model)

The code is slightly changed and the following is a simple example:

import torch
class Net(torch.nn.Module):
 pass

model = Net().cuda()

DataParallel Begin
model = torch.nn.DataParallel(Net().cuda())
DataParallel End

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

6.3 Multi-Node Multi-Card Training Using
DistributedDataParallel

This section describes how to perform multi-node multi-card parallel training
based on the PyTorch engine.

Training Process
Compared with DataParallel, DistributedDataParallel can start multiple processes
for computing, greatly improving compute resource usage. Based on
torch.distributed, DistributedDataParallel has obvious advantages over
DataParallel in the distributed computing case. The process is as follows:

1. Initializes the process group.
2. Creates a distributed parallel model. Each process has the same model and

parameters.
3. Creates a distributed sampler for data distribution to enable each process to

load a unique subset of the original dataset in a mini batch.
4. Parameters are organized into buckets based on their shapes or sizes, which

are generally determined by each layer of the network that requires
parameter update in a neural network model.

5. Each process does its own forward propagation and computes its gradient.
6. After all parameter gradients at a bucket are obtained, communication is

performed for gradient averaging.
7. Each GPU updates model parameters.

The detailed flowchart is as follows.

Figure 6-2 Multi-node multi-card parallel training

Advantages
● Fast communication

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

● Balanced load
● Fast running speed

Code Modifications
● Multi-process startup
● New variables such as rank ID and world_size are used along with the TCP

protocol.
● Sampler for data distribution to avoid duplicate data between different

processes
● Model distribution: DistributedDataParallel(model)
● Model saved in GPU 0
import torch
class Net(torch.nn.Module):
 pass

model = Net().cuda()

DistributedDataParallel Begin
model = torch.nn.parallel.DistributedDataParallel(Net().cuda())
DistributedDataParallel End

Related Operations
● For details about distributed debugging adaptation and code example, see

Distributed Debugging Adaptation and Code Example.
● This document also provides a complete code sample of distributed parallel

training for the classification task of ResNet18 on the cifar10 dataset. For
details, see Sample Code of Distributed Training.

6.4 Distributed Debugging Adaptation and Code
Example

In DistributedDataParallel, each process loads a subset of the original dataset in a
batch, and finally the gradients of all processes are averaged as the final gradient.
Due to a large number of samples, a calculated gradient is more reliable, and a
learning rate can be increased.

This section describes the code of single-node training and distributed parallel
training for the classification job of ResNet18 on the CIFAR-10 dataset. Directly
execute the code to perform multi-node distributed training with CPUs or GPUs;
comment out the distributed training settings in the code to perform single-node
single-card training.

The training code contains three input parameters: basic training parameters,
distributed parameters, and data parameters. The distributed parameters are
automatically input by the platform. custom_data indicates whether to use
custom data for training. If this parameter is set to true, torch-based random data
is used for training and validation.

Dataset
CIFAR-10 dataset

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

In notebook instances, torchvision of the default version cannot be used to obtain
datasets. Therefore, the sample code provides three training data loading
methods.

Click CIFAR-10 python version on the download page to download the CIFAR-10
dataset.

● Download the CIFAR-10 dataset using torchvision.
● Download the CIFAR-10 dataset based on the URL and decompress the

dataset in a specified directory. The sizes of the training set and test set are
(50000, 3, 32, 32) and (10000, 3, 32, 32), respectively.

● Use Torch to obtain a random dataset similar to CIFAR-10. The sizes of the
training set and test set are (5000, 3, 32, 32) and (1000, 3, 32, 32),
respectively. The labels are still of 10 types. Set custom_data to true, and the
training task can be directly executed without loading data.

Training Code
In the following code, those commented with ### Settings for distributed training
and ... ### are code modifications for multi-node distributed training.

Do not modify the sample code. After the data path is changed to your path,
multi-node distributed training can be executed on ModelArts.

After the distributed code modifications are commented out, the single-node
single-card training can be executed. For details about the complete code, see
Sample Code of Distributed Training.

● Importing dependency packages
import datetime
import inspect
import os
import pickle
import random

import argparse
import numpy as np
import torch
import torch.distributed as dist
from torch import nn, optim
from torch.utils.data import TensorDataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from sklearn.metrics import accuracy_score

● Defining the method and random number for loading data (The code for
loading data is not described here due to its large amount.)
def setup_seed(seed):
 torch.manual_seed(seed)
 torch.cuda.manual_seed_all(seed)
 np.random.seed(seed)
 random.seed(seed)
 torch.backends.cudnn.deterministic = True

def get_data(path):
 pass

● Defining a network structure
class Block(nn.Module):

 def __init__(self, in_channels, out_channels, stride=1):
 super().__init__()
 self.residual_function = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

http://www.cs.toronto.edu/~kriz/cifar.html

 nn.BatchNorm2d(out_channels),
 nn.ReLU(inplace=True),
 nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(out_channels)
)

 self.shortcut = nn.Sequential()
 if stride != 1 or in_channels != out_channels:
 self.shortcut = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(out_channels)
)

 def forward(self, x):
 out = self.residual_function(x) + self.shortcut(x)
 return nn.ReLU(inplace=True)(out)

class ResNet(nn.Module):

 def __init__(self, block, num_classes=10):
 super().__init__()
 self.conv1 = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(64),
 nn.ReLU(inplace=True))
 self.conv2 = self.make_layer(block, 64, 64, 2, 1)
 self.conv3 = self.make_layer(block, 64, 128, 2, 2)
 self.conv4 = self.make_layer(block, 128, 256, 2, 2)
 self.conv5 = self.make_layer(block, 256, 512, 2, 2)
 self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
 self.dense_layer = nn.Linear(512, num_classes)

 def make_layer(self, block, in_channels, out_channels, num_blocks, stride):
 strides = [stride] + [1] * (num_blocks - 1)
 layers = []
 for stride in strides:
 layers.append(block(in_channels, out_channels, stride))
 in_channels = out_channels
 return nn.Sequential(*layers)

 def forward(self, x):
 out = self.conv1(x)
 out = self.conv2(out)
 out = self.conv3(out)
 out = self.conv4(out)
 out = self.conv5(out)
 out = self.avg_pool(out)
 out = out.view(out.size(0), -1)
 out = self.dense_layer(out)
 return out

● Training and validation
def main():
 file_dir = os.path.dirname(inspect.getframeinfo(inspect.currentframe()).filename)

 seed = datetime.datetime.now().year
 setup_seed(seed)

 parser = argparse.ArgumentParser(description='Pytorch distribute training',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('--enable_gpu', default='true')
 parser.add_argument('--lr', default='0.01', help='learning rate')
 parser.add_argument('--epochs', default='100', help='training iteration')

 parser.add_argument('--init_method', default=None, help='tcp_port')
 parser.add_argument('--rank', type=int, default=0, help='index of current task')
 parser.add_argument('--world_size', type=int, default=1, help='total number of tasks')

 parser.add_argument('--custom_data', default='false')

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

 parser.add_argument('--data_url', type=str, default=os.path.join(file_dir, 'input_dir'))
 parser.add_argument('--output_dir', type=str, default=os.path.join(file_dir, 'output_dir'))
 args, unknown = parser.parse_known_args()

 args.enable_gpu = args.enable_gpu == 'true'
 args.custom_data = args.custom_data == 'true'
 args.lr = float(args.lr)
 args.epochs = int(args.epochs)

 if args.custom_data:
 print('[warning] you are training on custom random dataset, '
 'validation accuracy may range from 0.4 to 0.6.')

Settings for distributed training. Initialize DistributedDataParallel process. The init_method,
rank, and world_size parameters are automatically input by the platform. ###
 dist.init_process_group(init_method=args.init_method, backend="nccl", world_size=args.world_size,
rank=args.rank)
Settings for distributed training. Initialize DistributedDataParallel process. The init_method,
rank, and world_size parameters are automatically input by the platform. ###

 tr_set, val_set = get_data(args.data_url, custom_data=args.custom_data)

 batch_per_gpu = 128
 gpus_per_node = torch.cuda.device_count() if args.enable_gpu else 1
 batch = batch_per_gpu * gpus_per_node

 tr_loader = DataLoader(tr_set, batch_size=batch, shuffle=False)

Settings for distributed training. Create a sampler for data distribution to ensure that different
processes load different data. ###
 tr_sampler = DistributedSampler(tr_set, num_replicas=args.world_size, rank=args.rank)
 tr_loader = DataLoader(tr_set, batch_size=batch, sampler=tr_sampler, shuffle=False, drop_last=True)
Settings for distributed training. Create a sampler for data distribution to ensure that different
processes load different data. ###

 val_loader = DataLoader(val_set, batch_size=batch, shuffle=False)

 lr = args.lr * gpus_per_node
 max_epoch = args.epochs
 model = ResNet(Block).cuda() if args.enable_gpu else ResNet(Block)

Settings for distributed training. Build a DistributedDataParallel model.
 model = nn.parallel.DistributedDataParallel(model)
Settings for distributed training. Build a DistributedDataParallel model.

 optimizer = optim.Adam(model.parameters(), lr=lr)
 loss_func = torch.nn.CrossEntropyLoss()

 os.makedirs(args.output_dir, exist_ok=True)

 for epoch in range(1, max_epoch + 1):
 model.train()
 train_loss = 0

Settings for distributed training. DistributedDataParallel sampler. Random numbers are set for
the DistributedDataParallel sampler based on the current epoch number to avoid loading duplicate
data. ###
 tr_sampler.set_epoch(epoch)
Settings for distributed training. DistributedDataParallel sampler. Random numbers are set for
the DistributedDataParallel sampler based on the current epoch number to avoid loading duplicate
data. ###

 for step, (tr_x, tr_y) in enumerate(tr_loader):
 if args.enable_gpu:
 tr_x, tr_y = tr_x.cuda(), tr_y.cuda()
 out = model(tr_x)
 loss = loss_func(out, tr_y)
 optimizer.zero_grad()
 loss.backward()

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

 optimizer.step()
 train_loss += loss.item()
 print('train | epoch: %d | loss: %.4f' % (epoch, train_loss / len(tr_loader)))

 val_loss = 0
 pred_record = []
 real_record = []
 model.eval()
 with torch.no_grad():
 for step, (val_x, val_y) in enumerate(val_loader):
 if args.enable_gpu:
 val_x, val_y = val_x.cuda(), val_y.cuda()
 out = model(val_x)
 pred_record += list(np.argmax(out.cpu().numpy(), axis=1))
 real_record += list(val_y.cpu().numpy())
 val_loss += loss_func(out, val_y).item()
 val_accu = accuracy_score(real_record, pred_record)
 print('val | epoch: %d | loss: %.4f | accuracy: %.4f' % (epoch, val_loss / len(val_loader), val_accu),
'\n')

 if args.rank == 0:
 # save ckpt every epoch
 torch.save(model.state_dict(), os.path.join(args.output_dir, f'epoch_{epoch}.pth'))

if __name__ == '__main__':
 main()

● Result comparison
100-epoch cifar-10 dataset training is completed using two resource types
respectively: single-node single-card and two-node 16-card. The training
duration and test set accuracy are as follows.

Table 6-1 Training result comparison

Resource Type Single-Node Single-
Card

Two-Node 16-Card

Duration 60 minutes 20 minutes

Accuracy 80+ 80+

6.5 Sample Code of Distributed Training
The following provides a complete code sample of distributed parallel training for
the classification task of ResNet18 on the CIFAR-10 dataset.

The content of the training boot file main.py is as follows (if you need to execute
a single-node and single-card training job, delete the code for distributed
reconstruction):

import datetime
import inspect
import os
import pickle
import random
import logging

import argparse
import numpy as np

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

from sklearn.metrics import accuracy_score
import torch
from torch import nn, optim
import torch.distributed as dist
from torch.utils.data import TensorDataset, DataLoader
from torch.utils.data.distributed import DistributedSampler

file_dir = os.path.dirname(inspect.getframeinfo(inspect.currentframe()).filename)

def load_pickle_data(path):
 with open(path, 'rb') as file:
 data = pickle.load(file, encoding='bytes')
 return data

def _load_data(file_path):
 raw_data = load_pickle_data(file_path)
 labels = raw_data[b'labels']
 data = raw_data[b'data']
 filenames = raw_data[b'filenames']

 data = data.reshape(10000, 3, 32, 32) / 255
 return data, labels, filenames

def load_cifar_data(root_path):
 train_root_path = os.path.join(root_path, 'cifar-10-batches-py/data_batch_')
 train_data_record = []
 train_labels = []
 train_filenames = []
 for i in range(1, 6):
 train_file_path = train_root_path + str(i)
 data, labels, filenames = _load_data(train_file_path)
 train_data_record.append(data)
 train_labels += labels
 train_filenames += filenames
 train_data = np.concatenate(train_data_record, axis=0)
 train_labels = np.array(train_labels)

 val_file_path = os.path.join(root_path, 'cifar-10-batches-py/test_batch')
 val_data, val_labels, val_filenames = _load_data(val_file_path)
 val_labels = np.array(val_labels)

 tr_data = torch.from_numpy(train_data).float()
 tr_labels = torch.from_numpy(train_labels).long()
 val_data = torch.from_numpy(val_data).float()
 val_labels = torch.from_numpy(val_labels).long()
 return tr_data, tr_labels, val_data, val_labels

def get_data(root_path, custom_data=False):
 if custom_data:
 train_samples, test_samples, img_size = 5000, 1000, 32
 tr_label = [1] * int(train_samples / 2) + [0] * int(train_samples / 2)
 val_label = [1] * int(test_samples / 2) + [0] * int(test_samples / 2)
 random.seed(2021)
 random.shuffle(tr_label)
 random.shuffle(val_label)
 tr_data, tr_labels = torch.randn((train_samples, 3, img_size, img_size)).float(),
torch.tensor(tr_label).long()
 val_data, val_labels = torch.randn((test_samples, 3, img_size, img_size)).float(),

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

torch.tensor(
 val_label).long()
 tr_set = TensorDataset(tr_data, tr_labels)
 val_set = TensorDataset(val_data, val_labels)
 return tr_set, val_set
 elif os.path.exists(os.path.join(root_path, 'cifar-10-batches-py')):
 tr_data, tr_labels, val_data, val_labels = load_cifar_data(root_path)
 tr_set = TensorDataset(tr_data, tr_labels)
 val_set = TensorDataset(val_data, val_labels)
 return tr_set, val_set
 else:
 try:
 import torchvision
 from torchvision import transforms
 tr_set = torchvision.datasets.CIFAR10(root='./data', train=True,
 download=True, transform=transforms)
 val_set = torchvision.datasets.CIFAR10(root='./data', train=False,
 download=True, transform=transforms)
 return tr_set, val_set
 except Exception as e:
 raise Exception(
 f"{e}, you can download and unzip cifar-10 dataset manually, "
 "the data url is http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz")

class Block(nn.Module):

 def __init__(self, in_channels, out_channels, stride=1):
 super().__init__()
 self.residual_function = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1,
bias=False),
 nn.BatchNorm2d(out_channels),
 nn.ReLU(inplace=True),
 nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(out_channels)
)

 self.shortcut = nn.Sequential()
 if stride != 1 or in_channels != out_channels:
 self.shortcut = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(out_channels)
)

 def forward(self, x):
 out = self.residual_function(x) + self.shortcut(x)
 return nn.ReLU(inplace=True)(out)

class ResNet(nn.Module):

 def __init__(self, block, num_classes=10):
 super().__init__()
 self.conv1 = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(64),
 nn.ReLU(inplace=True))
 self.conv2 = self.make_layer(block, 64, 64, 2, 1)
 self.conv3 = self.make_layer(block, 64, 128, 2, 2)
 self.conv4 = self.make_layer(block, 128, 256, 2, 2)
 self.conv5 = self.make_layer(block, 256, 512, 2, 2)

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

 self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
 self.dense_layer = nn.Linear(512, num_classes)

 def make_layer(self, block, in_channels, out_channels, num_blocks, stride):
 strides = [stride] + [1] * (num_blocks - 1)
 layers = []
 for stride in strides:
 layers.append(block(in_channels, out_channels, stride))
 in_channels = out_channels
 return nn.Sequential(*layers)

 def forward(self, x):
 out = self.conv1(x)
 out = self.conv2(out)
 out = self.conv3(out)
 out = self.conv4(out)
 out = self.conv5(out)
 out = self.avg_pool(out)
 out = out.view(out.size(0), -1)
 out = self.dense_layer(out)
 return out

def setup_seed(seed):
 torch.manual_seed(seed)
 torch.cuda.manual_seed_all(seed)
 np.random.seed(seed)
 random.seed(seed)
 torch.backends.cudnn.deterministic = True

def obs_transfer(src_path, dst_path):
 import moxing as mox
 mox.file.copy_parallel(src_path, dst_path)
 logging.info(f"end copy data from {src_path} to {dst_path}")

def main():
 seed = datetime.datetime.now().year
 setup_seed(seed)

 parser = argparse.ArgumentParser(description='Pytorch distribute training',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('--enable_gpu', default='true')
 parser.add_argument('--lr', default='0.01', help='learning rate')
 parser.add_argument('--epochs', default='100', help='training iteration')

 parser.add_argument('--init_method', default=None, help='tcp_port')
 parser.add_argument('--rank', type=int, default=0, help='index of current task')
 parser.add_argument('--world_size', type=int, default=1, help='total number of tasks')

 parser.add_argument('--custom_data', default='false')
 parser.add_argument('--data_url', type=str, default=os.path.join(file_dir, 'input_dir'))
 parser.add_argument('--output_dir', type=str, default=os.path.join(file_dir, 'output_dir'))
 args, unknown = parser.parse_known_args()

 args.enable_gpu = args.enable_gpu == 'true'
 args.custom_data = args.custom_data == 'true'
 args.lr = float(args.lr)
 args.epochs = int(args.epochs)

 if args.custom_data:

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

 logging.warning('you are training on custom random dataset, '
 'validation accuracy may range from 0.4 to 0.6.')

Settings for distributed training. Initialize DistributedDataParallel process. The
init_method, rank, and world_size parameters are automatically input by the platform. ###
 dist.init_process_group(init_method=args.init_method, backend="nccl",
world_size=args.world_size, rank=args.rank)
Settings for distributed training. Initialize DistributedDataParallel process. The
init_method, rank, and world_size parameters are automatically input by the platform. ###

 tr_set, val_set = get_data(args.data_url, custom_data=args.custom_data)

 batch_per_gpu = 128
 gpus_per_node = torch.cuda.device_count() if args.enable_gpu else 1
 batch = batch_per_gpu * gpus_per_node

 tr_loader = DataLoader(tr_set, batch_size=batch, shuffle=False)

Settings for distributed training. Create a sampler for data distribution to ensure that
different processes load different data. ###
 tr_sampler = DistributedSampler(tr_set, num_replicas=args.world_size, rank=args.rank)
 tr_loader = DataLoader(tr_set, batch_size=batch, sampler=tr_sampler, shuffle=False,
drop_last=True)
Settings for distributed training. Create a sampler for data distribution to ensure that
different processes load different data. ###

 val_loader = DataLoader(val_set, batch_size=batch, shuffle=False)

 lr = args.lr * gpus_per_node * args.world_size
 max_epoch = args.epochs
 model = ResNet(Block).cuda() if args.enable_gpu else ResNet(Block)

Settings for distributed training. Build a DistributedDataParallel model.
 model = nn.parallel.DistributedDataParallel(model)
Settings for distributed training. Build a DistributedDataParallel model.

 optimizer = optim.Adam(model.parameters(), lr=lr)
 loss_func = torch.nn.CrossEntropyLoss()

 os.makedirs(args.output_dir, exist_ok=True)

 for epoch in range(1, max_epoch + 1):
 model.train()
 train_loss = 0

Settings for distributed training. DistributedDataParallel sampler. Random numbers are set
for the DistributedDataParallel sampler based on the current epoch number to avoid loading
duplicate data. ###
 tr_sampler.set_epoch(epoch)
Settings for distributed training. DistributedDataParallel sampler. Random numbers are set
for the DistributedDataParallel sampler based on the current epoch number to avoid loading
duplicate data. ###

 for step, (tr_x, tr_y) in enumerate(tr_loader):
 if args.enable_gpu:
 tr_x, tr_y = tr_x.cuda(), tr_y.cuda()
 out = model(tr_x)
 loss = loss_func(out, tr_y)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 train_loss += loss.item()

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

 print('train | epoch: %d | loss: %.4f' % (epoch, train_loss / len(tr_loader)))

 val_loss = 0
 pred_record = []
 real_record = []
 model.eval()
 with torch.no_grad():
 for step, (val_x, val_y) in enumerate(val_loader):
 if args.enable_gpu:
 val_x, val_y = val_x.cuda(), val_y.cuda()
 out = model(val_x)
 pred_record += list(np.argmax(out.cpu().numpy(), axis=1))
 real_record += list(val_y.cpu().numpy())
 val_loss += loss_func(out, val_y).item()
 val_accu = accuracy_score(real_record, pred_record)
 print('val | epoch: %d | loss: %.4f | accuracy: %.4f' % (epoch, val_loss / len(val_loader),
val_accu), '\n')

 if args.rank == 0:
 # save ckpt every epoch
 torch.save(model.state_dict(), os.path.join(args.output_dir, f'epoch_{epoch}.pth'))

if __name__ == '__main__':
 main()

FAQs
1. How Do I Use Different Datasets in the Sample Code?

● To use the CIFAR-10 dataset in the preceding code, download and
decompress the dataset and upload it to the OBS bucket. The file directory
structure is as follows:
DDP
|--- main.py
|--- input_dir
|------ cifar-10-batches-py
|-------- data_batch_1
|-------- data_batch_2
|-------- ...

DDP is the code directory specified during training job creation, main.py is
the preceding code example (the boot file specified during training job
creation), and cifar-10-batches-py is the decompressed dataset folder that is
stored in the input_dir folder.

● To use user-defined random data, change the value of custom_data in the
code example to true.
parser.add_argument('--custom_data', default='true')

Then, run main.py. The parameters for creating a training job are the same as
those shown in the preceding figure.

2. Why Can I Leave the IP Address of the Master Node Blank for DDP?

The init method parameter in parser.add_argument('--init_method',
default=None, help='tcp_port') contains the IP address and port number of the
master node, which are automatically input by the platform.

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

6.6 Example of Starting PyTorch DDP Training Based on
a Training Job

This topic describes three methods of using a training job to start PyTorch DDP
training and provides their sample code.

● Use PyTorch preset images and run the mp.spawn command.
● Use custom images.

– Run the torch.distributed.launch command.
– Run the torch.distributed.run command.

Creating a Training Job
● Method 1: Use the preset PyTorch framework and run the mp.spawn

command to start a training job.
For details about parameters for creating a training job, see Table 6-2.

Table 6-2 Creating a training job (preset framework)

Parameter Description

Algorithm Type Select Custom algorithm.

Boot Mode Choose Preset image and set AI Engine to PyTorch.
Configure the PyTorch version based on your training
requirements.

Code Directory Select the path where the training code folder is
stored in the OBS bucket, for example, obs://test-
modelarts/code/.

Boot File Select the Python boot script of the training job in the
code directory, for example, obs://test-modelarts/
code/main.py.

Hyperparameters If the resource specification is single-node multi-card,
you need to specify the hyperparameters world_size
and rank.
If you select a resource flavor with multiple nodes
(more than one compute node), you do not need to
set these hyperparameters. world_size and rank are
automatically injected by ModelArts.

● Method 2: Use a custom image and run the torch.distributed.launch

command to start a training job.
For details about parameters for creating a training job, see Table 6-3.

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

Table 6-3 Creating a training job (custom image + torch.distributed.launch)

Parameter Description

Algorithm Type Select Custom algorithm.

Boot Mode Select Custom image.

Image Select a PyTorch image for training.

Code Directory Select the path where the training code folder is
stored in the OBS bucket, for example, obs://test-
modelarts/code/.

Boot Command Enter the Python startup command of the image, for
example:
bash ${MA_JOB_DIR}/code/torchlaunch.sh

● Method 3: Use a custom image and run the torch.distributed.run command

to start a training job.
For details about parameters for creating a training job, see Table 6-4.

Table 6-4 Creating a training job (custom image + torch.distributed.run)

Parameter Description

Algorithm Type Select Custom algorithm.

Boot Mode Select Custom image.

Image Select a PyTorch image for training.

Code Directory Select the path where the training code folder is
stored in the OBS bucket, for example, obs://test-
modelarts/code/.

Boot Command Enter the Python startup command of the image, for
example:
bash ${MA_JOB_DIR}/code/torchrun.sh

Code Examples
Upload the following files to an OBS bucket:

code # Root directory of the code
 └─torch_ddp.py # Code file for PyTorch DDP training
 └─main.py # Boot file for starting training using the PyTorch preset image and the mp.spawn
command
 └─torchlaunch.sh # Boot file for starting training using the custom image and the
torch.distributed.launch command
 └─torchrun.sh # Boot file for starting training using the custom image and the
torch.distributed.run command

torch_ddp.py

import os
import torch
import torch.distributed as dist

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP

Start training by running mp.spawn.
def init_from_arg(local_rank, base_rank, world_size, init_method):
 rank = base_rank + local_rank
 dist.init_process_group("nccl", rank=rank, init_method=init_method, world_size=world_size)
 ddp_train(local_rank)

Start training by running torch.distributed.launch or torch.distributed.run.
def init_from_env():
 dist.init_process_group(backend='nccl', init_method='env://')
 local_rank=int(os.environ["LOCAL_RANK"])
 ddp_train(local_rank)

def cleanup():
 dist.destroy_process_group()

class ToyModel(nn.Module):
 def __init__(self):
 super(ToyModel, self).__init__()
 self.net1 = nn.Linear(10, 10)
 self.relu = nn.ReLU()
 self.net2 = nn.Linear(10, 5)
 def forward(self, x):
 return self.net2(self.relu(self.net1(x)))

def ddp_train(device_id):
 # create model and move it to GPU with id rank
 model = ToyModel().to(device_id)
 ddp_model = DDP(model, device_ids=[device_id])
 loss_fn = nn.MSELoss()
 optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)
 optimizer.zero_grad()
 outputs = ddp_model(torch.randn(20, 10))
 labels = torch.randn(20, 5).to(device_id)
 loss_fn(outputs, labels).backward()
 optimizer.step()
 cleanup()

if __name__ == "__main__":
 init_from_env()

main.py

import argparse
import torch
import torch.multiprocessing as mp

parser = argparse.ArgumentParser(description='ddp demo args')
parser.add_argument('--world_size', type=int, required=True)
parser.add_argument('--rank', type=int, required=True)
parser.add_argument('--init_method', type=str, required=True)
args, unknown = parser.parse_known_args()

if __name__ == "__main__":
 n_gpus = torch.cuda.device_count()
 world_size = n_gpus * args.world_size
 base_rank = n_gpus * args.rank
 # Call the start function in the DDP sample code.
 from torch_ddp import init_from_arg
 mp.spawn(init_from_arg,
 args=(base_rank, world_size, args.init_method),
 nprocs=n_gpus,
 join=True)

torchlaunch.sh
#!/bin/bash
Default system environment variables. Do not modify them.

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

MASTER_HOST="$VC_WORKER_HOSTS"
MASTER_ADDR="${VC_WORKER_HOSTS%%,*}"
MASTER_PORT="6060"
JOB_ID="1234"
NNODES="$MA_NUM_HOSTS"
NODE_RANK="$VC_TASK_INDEX"
NGPUS_PER_NODE="$MA_NUM_GPUS"

Custom environment variables to specify the Python script and parameters.
PYTHON_SCRIPT=${MA_JOB_DIR}/code/torch_ddp.py
PYTHON_ARGS=""

CMD="python -m torch.distributed.launch \
 --nnodes=$NNODES \
 --node_rank=$NODE_RANK \
 --nproc_per_node=$NGPUS_PER_NODE \
 --master_addr $MASTER_ADDR \
 --master_port=$MASTER_PORT \
 --use_env \
 $PYTHON_SCRIPT \
 $PYTHON_ARGS
"
echo $CMD
$CMD

torchrun.sh

NO TICE

In PyTorch 2.1, you must set rdzv_backend to static: --rdzv_backend=static.

#!/bin/bash
Default system environment variables. Do not modify them.
MASTER_HOST="$VC_WORKER_HOSTS"
MASTER_ADDR="${VC_WORKER_HOSTS%%,*}"
MASTER_PORT="6060"
JOB_ID="1234"
NNODES="$MA_NUM_HOSTS"
NODE_RANK="$VC_TASK_INDEX"
NGPUS_PER_NODE="$MA_NUM_GPUS"

Custom environment variables to specify the Python script and parameters.
PYTHON_SCRIPT=${MA_JOB_DIR}/code/torch_ddp.py
PYTHON_ARGS=""

if [[$NODE_RANK == 0]]; then
 EXT_ARGS="--rdzv_conf=is_host=1"
else
 EXT_ARGS=""
fi

CMD="python -m torch.distributed.run \
 --nnodes=$NNODES \
 --node_rank=$NODE_RANK \
 $EXT_ARGS \
 --nproc_per_node=$NGPUS_PER_NODE \
 --rdzv_id=$JOB_ID \
 --rdzv_backend=c10d \
 --rdzv_endpoint=$MASTER_ADDR:$MASTER_PORT \
 $PYTHON_SCRIPT \
 $PYTHON_ARGS
 "
echo $CMD
$CMD

ModelArts
Model Development 6 Distributed Training

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

7 Automatic Model Tuning (AutoSearch)

7.1 Introduction to Hyperparameter Search
ModelArts training supports hyperparameter search, which can automatically
search for optimal hyperparameters for your models.

During model training, many hyperparameters, such as learning_rate and
weight_decay, need to be adjusted based on actual requirements. This may cost
an experienced algorithm engineer a lot of time and effort on manual
optimization. However, the hyperparameter search supported by ModelArts can
automatically optimize hyperparameters without the help of algorithm engineers
and has higher optimization speed and precision than manual optimization.

ModelArts supports the following hyperparameter search algorithms:

● Bayesian Optimization (SMAC)
● TPE Algorithm
● Simulated Annealing Algorithm

7.2 Search Algorithm

7.2.1 Bayesian Optimization (SMAC)
In Bayesian optimization, it is assumed that there exists a functional relationship
between hyperparameters and the objective function. Based on the evaluation
values of the searched hyperparameters, the mean and variance of the objective
function values at other search points are estimated through Gaussian process
regression. The mean and variance are then used to construct the acquisition
function. The next search point is the maximum value of the acquisition function.
Compared with grid search, Bayesian optimization uses the previous evaluation
results to reduce the number of iterations and shorten the search time. The
disadvantage is that it is difficult to find the global optimal solution.

ModelArts
Model Development 7 Automatic Model Tuning (AutoSearch)

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

Table 7-1 Bayesian optimization parameters

Parameter Description Recommended Value

num_samples Number of times to sample
from the hyperparameter
space

The value is an integer ranging
from 10 to 20. The larger the
value, the longer the search time
and the better the effect.

kind Acquisition function type This value is string type. The
default value is ucb and other
value options are ei and poi. Do
not change the default one.

kappa Adjustment parameter of
acquisition function type
ucb, which is the upper
confidence boundary

This value is a float. You are
advised not to change it.

xi Adjustment parameter of
acquisition function types
poi and ei

This value is a float. You are
advised not to change it.

7.2.2 TPE Algorithm
The tree-structured parzen estimator (TPE) algorithm uses the Gaussian mixture
model to learn the model hyperparameters. On each trial, for each parameter, TPE
fits one Gaussian mixture model l(x) to the set of parameter values associated
with the best objective values, and another Gaussian mixture model g(x) to the
remaining parameter values. It chooses the hyperparameter value that maximizes
the ratio l(x)/g(x).

Table 7-2 TPE algorithm parameters

Parameter Description Recommended Value

num_samples Number of times to sample from
the hyperparameter space

The value is an integer
ranging from 10 to 20.
The larger the value, the
longer the search time
and the better the effect.

n_initial_point
s

Number of random evaluations of
the objective function before
starting to approximate it with tree
parzen estimators

The value is an integer.
You are advised not to
change it.

gamma Quantile of the TPE algorithm to
divide l(x) and g(x)

This value is a float
ranging from 0 to 1. You
are advised not to
change it.

ModelArts
Model Development 7 Automatic Model Tuning (AutoSearch)

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

7.2.3 Simulated Annealing Algorithm
The simulated annealing algorithm is a simple but effective variant on random
search that leverages smoothness in the response surface. The annealing rate is
not adaptive. The annealing algorithm is to choose one of the previous trial points
as a starting point, and then to sample each hyperparameter from a similar
distribution to the one specified in the prior, but whose density is more
concentrated around the selected trial point. The algorithm tends over time to
sample from points closer and closer to the best ones. During the sampling, this
algorithm may draw a runner-up trial as the best trail to avoid local optima at a
certain probability.

Table 7-3 Parameters of the simulated annealing algorithm

Parameter Description Recommended Value

num_samples Number of times to sample from
the hyperparameter space

The value is an integer
ranging from 10 to 20.
The larger the value, the
longer the search time
and the better the effect.

avg_best_idx Mean of geometric distribution
over which trial to explore around,
selecting from trials sorted by score

This value is a float. You
are advised not to
change it.

shrink_coef Rate of reduction in the size of
sampling neighborhood as more
points have been explored

This value is a float. You
are advised not to
change it.

7.3 Creating a Hyperparameter Search Job

Background
If the AI engine is pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 or
tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64 and the
hyperparameter to be optimized is of the float type, you can use hyperparameter
search on ModelArts.

You can perform the hyperparameter search without any code modification. The
procedure is as follows:

1. Preparations
2. Creating an Algorithm
3. Creating a Training Job
4. Viewing Details About a Hyperparameter Search Job

Preparations
● Data has been prepared. Specifically, you have created an available dataset in

ModelArts, or you have uploaded the dataset used for training to the OBS
directory.

ModelArts
Model Development 7 Automatic Model Tuning (AutoSearch)

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

● Prepare the training script and upload it to the OBS directory. For details
about how to develop a training script, see Developing a Custom Script.

● In the training code, print the search indicator parameters.

● At least one empty folder has been created in OBS for storing the training
output.

● The account is not in arrears because resources are consumed when training
jobs are running.

● The OBS directory you use and ModelArts are in the same region.

Creating an Algorithm

Log in to the ModelArts management console and create an algorithm by
referring to Creating an Algorithm. The image must use the pytorch_1.8.0-
cuda_10.2-py_3.7-ubuntu_18.04-x86_64 or tensorflow_2.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-x86_64 engine.

Hyperparameters that you want to optimize need to be defined when you
configure Hyperparameters. You can specify the name, type, default value, and
constraints. For details, see Defining Hyperparameters.

Select autoSearch(S) to enable auto search for the algorithm. During an auto
search, ModelArts uses a regular expression to obtain the search indicator
parameters and performs hyperparameter optimization based on the optimization
direction. Print search parameters in the code and set the following parameters.

Figure 7-1 Enabling auto search

● Search Indicator

The search indicator is the value of the objective function, which can be loss,
accuracy, and so on. By optimizing and converging this value based on the
optimization direction, the optimal hyperparameter can be found to improve
the model precision and convergence speed.

ModelArts
Model Development 7 Automatic Model Tuning (AutoSearch)

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

Table 7-4 Search indicator parameters

Parameter Description

Name search indicator name. This parameter must be
identical to the search indicator parameter in the
code.

Optimization Direction This parameter can be max or min.

Counter regularization A regular expression needs to be entered. You
can click Generate Intelligently to generate a
regular expression automatically.

● Setting Automatic Search Parameters

Select hyperparameters that can be used for search optimization from what
you configured for Hyperparameters. Only hyperparameters of the float type
are supported. After autoSearch(S) is selected, set the value range.

● Search Algorithm Configuration
ModelArts has three built-in algorithms for hyperparameter search. You can
select one or more algorithms as needed. The algorithms and their parameter
description are as follows:
– bayes_opt_search:Bayesian Optimization (SMAC)
– tpe_search:TPE Algorithm
– anneal_search:Simulated Annealing Algorithm

After the algorithm is created, use it to create a training job.

Creating a Training Job
Log in to the ModelArts console and create a training job by referring to Creating
a Training Job. Pay attention to operations described in this section before you
enable the hyperparameter search.

If you select an algorithm that supports hyperparameter search, click the button
for range setting to enable hyperparameter search.

Figure 7-2 Enabling hyperparameter search

ModelArts
Model Development 7 Automatic Model Tuning (AutoSearch)

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

After the hyperparameter search is enabled, you can configure the search
indicator, search algorithm, and parameters of the selected algorithm. These
parameters need to have the same values as the hyperparameters of the
algorithm you created.

After a hyperparameter search job is created, it will take a period of time to run it.

Viewing Details About a Hyperparameter Search Job
After a training job is completed, you can review the results of the automated
hyperparameter search to evaluate the job's performance.

If the training job is a hyperparameter search job, go to the training job details
page and click the Auto Search Results tab to view the hyperparameter search
results.

Figure 7-3 Hyperparameter search results

ModelArts
Model Development 7 Automatic Model Tuning (AutoSearch)

Issue 01 (2025-01-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

	Contents
	1 Introduction to Model Development
	2 Preparing Data
	3 Preparing Algorithms
	3.1 Introduction to Algorithm Preparation
	3.2 Using a Preset Image (Custom Script)
	3.2.1 Overview
	3.2.2 Developing a Custom Script
	3.2.3 Creating an Algorithm

	3.3 Using Custom Images
	3.4 Viewing Algorithm Details
	3.5 Searching for an Algorithm
	3.6 Deleting an Algorithm

	4 Performing a Training
	4.1 Creating a Training Job
	4.2 Viewing Training Job Details
	4.3 Viewing Training Job Events
	4.4 Training Job Logs
	4.4.1 Introduction to Training Job Logs
	4.4.2 Common Logs
	4.4.3 Viewing Training Job Logs
	4.4.4 Locating Faults by Analyzing Training Logs

	4.5 Cloud Shell
	4.5.1 Logging In to a Training Container Using Cloud Shell
	4.5.2 Keeping a Training Job Running
	4.5.3 Preventing Cloud Shell Session from Disconnection

	4.6 Viewing the Resource Usage of a Training Job
	4.7 Evaluation Results
	4.8 Viewing Training Tags
	4.9 Viewing Fault Recovery Details
	4.10 Viewing Environment Variables of a Training Container
	4.11 Stopping, Rebuilding, or Searching for a Training Job
	4.12 Releasing Training Job Resources

	5 Advanced Training Operations
	5.1 Automatic Recovery from a Training Fault
	5.1.1 Training Fault Tolerance Check
	5.1.2 Unconditional Auto Restart

	5.2 Resumable Training and Incremental Training
	5.3 Detecting Training Job Suspension
	5.4 Priority of a Training Job
	5.5 Permission to Set the Highest Job Priority

	6 Distributed Training
	6.1 Distributed Training Functions
	6.2 Single-Node Multi-Card Training Using DataParallel
	6.3 Multi-Node Multi-Card Training Using DistributedDataParallel
	6.4 Distributed Debugging Adaptation and Code Example
	6.5 Sample Code of Distributed Training
	6.6 Example of Starting PyTorch DDP Training Based on a Training Job

	7 Automatic Model Tuning (AutoSearch)
	7.1 Introduction to Hyperparameter Search
	7.2 Search Algorithm
	7.2.1 Bayesian Optimization (SMAC)
	7.2.2 TPE Algorithm
	7.2.3 Simulated Annealing Algorithm

	7.3 Creating a Hyperparameter Search Job

